On stochastic averaging and mixing
Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 111-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

The text contains a review and new results on stochastic averaging via mixing bounds.
Keywords: Stochastic averaging, mixing bounds, Lyapunov function, hitting time bounds.
Mots-clés : Girsanov transformation
@article{THSP_2010_16_1_a13,
     author = {N. Abourashchi and A. Yu. Veretennikov},
     title = {On stochastic averaging and mixing},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {111--129},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a13/}
}
TY  - JOUR
AU  - N. Abourashchi
AU  - A. Yu. Veretennikov
TI  - On stochastic averaging and mixing
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 111
EP  - 129
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a13/
LA  - en
ID  - THSP_2010_16_1_a13
ER  - 
%0 Journal Article
%A N. Abourashchi
%A A. Yu. Veretennikov
%T On stochastic averaging and mixing
%J Teoriâ slučajnyh processov
%D 2010
%P 111-129
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a13/
%G en
%F THSP_2010_16_1_a13
N. Abourashchi; A. Yu. Veretennikov. On stochastic averaging and mixing. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 111-129. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a13/

[1] N. Abourashchi, Stability of Stochastic Differential Equations, PhD Thesis, University of Leeds, 2009

[2] V. I. Arnold, V. V. Kozlov, A. I. Neistadt, “Mathematical Aspects of Classical and Celestial Mechanics”, Encyclopaedia of Mathematical Sciences, v. 3, Dynamical Systems-3, Springer-Verlag, 1988; 1998; 2006

[3] V. Bakhtin, Yu. Kifer, “Diffusion approximation for slow motion in fully coupled averaging”, Probability Theory and Related Fields, 129:2 (2004), 157–181

[4] Dokl. Akad. Nauk SSSR, 221 (1975), 516–519

[5] N. N. Bogoliubov, Y. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach Inc., New York, 1961

[6] V. E. Beneš, “Existence of optimal stochastic control laws”, SIAM J. Control., 9:3 (1971), 446–472

[7] A. Benveniste, M. Metivier, P. Priovret, Adaptive Algorithems And Stochastic Approximation, Springer-Verlag, Berlin–Heidelberg–New York, 1990

[8] Teor. Veroyatn. Primen., 22 (1977), 498–512

[9] F. Campillo, “Optimal ergodic control for a class of nonlinear stochastic systems”, Proceedings of the 28th Conference on Decision and Control (Tampa, December 1989), IEEE, 1190–1195

[10] F. Campillo, F. Le Gland, E. Pardoux, “Approxmation of a stochastic ergodic control problem”, New trends in Nonlinear Control Theory, CNRS (Nants 1988), Lecture notes in Control and information Sciences, 122, eds. J. Descusse, M. Fliess, A. Isidori and D. Leborgne, Springer-Verlag, 1989, 379–395

[11] F. Campillo, E. Pardoux, “Numerical methods in ergodic optimal stochastic control and application. In: I. Karatzas and D. Ocone, eds.”, Applied Stochastic Analysis Proceedings of a US-French Workshop (Rutgers University, New Brunswick, NJ, April 29-May 2, 1991), lecture notes in Control and Information Sciences, 177, Springer-Verlag, Berlin, 1992, 59–73

[12] S. Cerrai, “A Khasminskii type averaging principle for stochastic reaction-diffusion equations”, Ann. Appl. Probab., 19(3) (2009), 899–948

[13] S. Cerrai, M. Freidlin, “Averaging Principle For A Class Of Stochastic Reaction Diffusion Equations”, Probability Theory and Related Fields, 144:1-2 (2009), 137–177

[14] J. L. Doob, Stochastic processes, J. Wiley and Sons, New York, 1953

[15] T. Duncan, P. Varayja, “On solutions of stochastic control systems”, SIAM Journal of Control, 9:3 (1971), 354–371

[16] M. Duflo, Recursive Stochastic Methods, Springer-Verlag, Berlin, 1993

[17] S. N. Ethier, T. G. Kurtz,, Markov processes: Characterization and Convergence, John Wiley Sons, New York et al., 1986

[18] J. Feng, T. G. Kurtz, Large deviations for stochastic processes, American Mathematical Society (AMS), Providence, RI, 2006

[19] J.-P. Fouque, G. Papanicolaou, K. R. Sircar, Derivatives in Financial Markets with Stochastic Volatility, CUP, 2000

[20] M. I. Freidlin, “The averaging principle and theorems on large deviations”, Russian Math. Surveys, 33:5 (1978), 117–176

[21] M. I. Freidlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, Berlin, 1984

[22] M. I. Freidlin, A. D. Wentzell, Random perturbations of Hamiltonian systems, Mem. Am. Math. Soc., 523, 1994

[23] M. I. Freidlin, R. B. Sowers, “A comparison of homogenization and large deviations, with applications to wavefront propagation”, Stochastic Processes Appl., 82:1 (1999), 23–52

[24] I. I. Gikhman, “On a theorem of N. N. Bogoliubov”, Ukr. Matem. Zhurnal, 4 (1952), 215–218 (in Russian)

[25] I. I. Gihman, A. V. Skorohod, Stochastic differential equations, Springer-Verlag, Berlin, 1972

[26] O. V. Gulinsky, A. Yu. Veretennikov, Large deviation for discrete time processes with averaging, VSP, Utrecht, The Netherlands, 1993

[27] Theory Probab. Appl., 3(5) (1960), 285–301

[28] I. Gyongy, N. V. Krylov, “Existence of strong solutions of Ito's stochastic equations via approximations”, Probability Theory and Related Fields, 105:2, 143–158

[29] R. Z. Has'minski, “On averaging principle for stochastic differential Itô's equations”, Kibernetika, 4:3 (1968), 260–279 (in Russian)

[30] R. Z. Has'minski, Stochastic stability of differential equations, Sijthoff Noordhoff, Alphen aan den Rijn, The Netherlands, and Rockville, Maryland, USA, 1980

[31] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, New York, 1994

[32] V. V. Jikov, S. M. Kozlov, “Multiscaled homogenization”, Homogenization. In memory of Serguei Kozlov, Ser. Adv. Math. Appl. Sci., 50, eds. Berdichevsky, V. et al., World Scientific, Singapore, 1999, 35-64

[33] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Springer-Verlag, 1991

[34] R. Z. Khasminskii, “Principle of Averaging for Parabolic and Elliptic Differential Equations and for Markov Processes with Small Diffusion”, Theory Probab. Appl., 8:1 (1963), 1–21

[35] R. Z. Khasminskii, “On the averaging principle for Itô stochastic differential equations”, Kibernetika (Prague), 4 (1968), 260–279 (in Russian)

[36] Yu. Kifer, “Some recent advances in averaging”, Modern dynamical systems and applications. Dedicated to Anatole Katok on his 60th birthday, eds. Brin, M. et al., Cambridge University Press, Cambridge, 2004, 385–403

[37] Yu. Kifer, “Averaging principle for fully coupled dynamical systems and large deviations”, Ergodic Theory and Dynamical Systems, 24(3) (2004), 847–871

[38] Yu. Kifer, Large deviations and adiabatic translations for dynamical systems and Markov processes in fully coupled averaging, Memoirs of AMS, Providence, Rhode Island, 2009

[39] Teor. Veroyatn. Primen., 49:1 (2004), 21–35

[40] S. A. Klokov, A. Yu. Veretennikov, “On mixing and convergence rates for a family of Markov processes approximating SDEs”, Random Oper. Stoch. Equ., 14:2 (2006), 103–126

[41] Yu. V. Kolomiets, “Averaging of randomly perturbed evolutionary equations”, Ukrainian Mathematical Journal, 45:7 (1993), 1066–1076

[42] Yu. V. Kolomiets, “Fractional Stability of Diffusion Approximation for Random Differential Equations”, Markov Processes and Related Topics: A Festschrift for Thomas G. Kurtz, eds. S. N. Ethier, J. Feng and R. H. Stockbridge,, IMS, Beachwood, Ohio, USA, 2008, 41–61

[43] Usp. Mat. Nauk, 44:2(266) (1989), 79–120

[44] M. A. Krasnosel'skii, S. G. Krein, “On the averaging principle in nonlinear mechanics”, Uspekhi Mat. Nauk, 1955

[45] N. Krylov, N. Bogoliubov, Introduction to non-linear mechanics, Princeton University Press, Princeton, N.J., 1943

[46] N. V. Krylov, “On Ito's stochastic integral equations”, Theor. Probab. Appl., 14 (1969), 330–336

[47] N. V. Krylov, Controlled diffusion processes, Springer-Verlag, New York et al., 1980

[48] Math. USSR Izv., 7 (1973), 691–709

[49] N. V. Krylov, “A simple proof of a result of A. Novikov”, arXiv: math/0207013v1

[50] R. Liptser, V. Spokoiny, A. Yu. Veretennikov, “Freidlin-Wentzell type large deviations for smooth processes”, Markov Process. Relat. Fields, 8:4 (2002), 611–636

[51] R. Liptser, J. Stoyanov, “On the averaging principle for diffusion type processes”, Stochastic and Stochastic Reports, 32, 145–163

[52] S. Ya. Mahno, “The averaging principle for stochastic partial differential equations”, Teor. Sluchajnykh Protsessov, 8 (1980), 113–117 (in Russian)

[53] Teor. Sluchajnykh Protsessov, 16 (1988), 66–73

[54] G. N. Milstein, A. Yu. Veretennikov, “On deterministic and stochastic sliding modes via small diffusion approximation”, Markov Process. Related Fields, 6:3 (2000), 371–395

[55] A. A. Novikov, “On moment inequalities and identities for stochastic integrals”, Proc. Second Japan–-USSR Symp. Probab. Theory, Lecture Notes in Math., 330, 1973, 333–339

[56] E. Pardoux, A. Yu. Veretennikov, “On the Possion equation and diffusion approximation 1, 2, 3”, Ann. Probab., 29:3 (2001), 1061-1085

[57] G. C. Papanicolaou, D. W. Stroock, S. R. S. Varadhan, “Martingale approach to some limit theorems”, Duke Turbul. Conf. (Durham 1976), 1977, VI.1-VI.120

[58] A. V. Skorokhod, Asymptotic methods in the theory of stochastic differential equations, American Mathematical Society (AMS), Providence, RI, 1989

[59] L. N. Vasserstein, “Markov Processes over Denumerable Products of Spaces, Describing Large Systems of Automata”, Probl. Peredachi Inf., 5:3 (1969), 64-–72 (in Russian)

[60] Izv. Akad. Nauk SSSR, Ser. Mat., 52:5 (1988), 899–908

[61] A. Yu. Veretennikov, “An essay on the theme of a theorem of Boris Vladimirovich Gnedenko”, Teor. Imovir. Mat. Stat., 69 (2003), 16–25

[62] A. Yu. Veretennikov, “Bounds for the mixing rate in the theory of stochastic equations”, Theory Probab. Appl., 32:2 (1987), 273–281

[63] A. Yu. Veretennikov, “On polynomial mixing bounds for stochastic differential equations”, Stoch. Processes Appl., 70 (1997), 115–127

[64] Math. USSR Sb., 39 (1981), 387–403

[65] A. Yu. Veretennikov, “Estimates for the mixing rate for Markov processes”, Lithuanian Math. J., 31:1 (1991), 27–34

[66] A. Yu. Veretennikov, “On the averaging principle for systems of stochastic differential equations”, Mat. Sb., 181:2 (1990), 256–268 (in Russian)

[67] A. Yu. Veretennikov, “On hypoellipticity conditions and estimates of the mixing rate for stochastic differential equations”, Soviet Math. Dokl., 40:1 (1990), 94–97

[68] A. Veretennikov, “On large deviations in averaging principle for stochastic differential equations with periodic coefficients. 1”, Probab. Theory and Math. Statistics, Proc. Fifth Vilnius Conf. (Vilnius, Lithuania, 1989), v. 2, ed. B. Grigelionis et. al., VSP, Mokslas and Utrecht, The Netherlands, 542–551

[69] Izv. Akad. Nauk SSSR, Ser. Mat., 55:4 (1991), 691–715

[70] A. Yu. Veretennikov, “Large deviations in averaging principle for stochastic differential equation systems (noncompact case)”, Stochastics and Stochastics Reports, 48 (1994), 83–96

[71] A. Veretennikov, “On large deviations for SDEs with small diffusion and averaging”, Stochastic Process. Appl., 89:1 (2000), 69–79

[72] A. Yu. Veretennikov, “On large deviations in the averaging principle for SDEs with a “full dependence””, Ann. Probab., 27:1 (1999), 284–296

[73] A. Yu. Veretennikov, “On large deviations in the averaging principle for SDE's with a “full dependence”, correction”, arXiv: . math.PR/0502098, 4 Feb 2005

[74] Theory Probab. Appl., 44:2 (2000), 361–374

[75] L. M. Wu, “Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems”, Stochastic Processes Appl., 91 (2001), 205–238