Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2010_16_1_a10, author = {Gogi Pantsulaia}, title = {On a standard product of an arbitrary family of $\sigma$-finite {Borel} measures with domains in {Polish} spaces}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {84--93}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a10/} }
TY - JOUR AU - Gogi Pantsulaia TI - On a standard product of an arbitrary family of $\sigma$-finite Borel measures with domains in Polish spaces JO - Teoriâ slučajnyh processov PY - 2010 SP - 84 EP - 93 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a10/ LA - en ID - THSP_2010_16_1_a10 ER -
%0 Journal Article %A Gogi Pantsulaia %T On a standard product of an arbitrary family of $\sigma$-finite Borel measures with domains in Polish spaces %J Teoriâ slučajnyh processov %D 2010 %P 84-93 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a10/ %G en %F THSP_2010_16_1_a10
Gogi Pantsulaia. On a standard product of an arbitrary family of $\sigma$-finite Borel measures with domains in Polish spaces. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 84-93. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a10/
[1] R. Baker, ““Lebesgue measure” on ${\mathbb R}\sp \infty$”, Proc. Amer. Math. Soc., 113 (1991), 1023–1029
[2] R. Baker, ““Lebesgue measure” on ${\mathbb R}\sp \infty$. II”, Proc. Amer. Math. Soc., 132 (2004), 2577–2591
[3] P. R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950
[4] P. A. Loeb, D. A. Ross, “Infinite products of infinite measures”, Illinois J. Math., 49:1 (2005), 153–158
[5] J. Ma$\check{r}\acute{i}$k, “The Baire and Borel measure”, Czechoslovak Math. J., 7 (1957), 248–253
[6] G. R. Pantsulaia, Invariant and Quasiinvariant Measures in Infinite-Dimensional Topological Vector Spaces, Nova Sci., New York, 2007
[7] G. R. Pantsulaia, “On ordinary and standard Lebesgue measures on $R^{\infty}$”, Bull. Polish Acad.Sci., 73 (2009), 209–222
[8] C. A. Rogers, Hausdorff Measures, Cambridge Univ. Press, Cambridge, 1970
[9] A. H. Stone, “Paracompactness and product spaces”, Bull. Amer. Math. Soc., 54 (1948), 977–982
[10] W. Stephen, General Topology, Addison-Wesley, London, 1970
[11] S. Y. Wen, “A certain regular property of the method I construction and packing measure”, Acta Math. Sin. (Engl. Ser.), 23:10 (2007), 1769–1776
[12] N. N. Vakhanya, V. I. Tarieladze, S. A. Chobanyan, Probability Distributions in Banach Spaces, Nauka, Moscow, 1985 (in Russian)