$M$-estimation for discretely sampled diffusions
Teoriâ slučajnyh processov, Tome 15 (2009) no. 2, pp. 62-83

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the estimation of a parameter in the nonlinear drift coefficient of a stationary ergodic diffusion process satisfying a homogeneous Itô stochastic differential equation based on discrete observations of the process, when the true model does not necessarily belong to the observer's model. Local asymptotic normality of $M$-ratio random fields are studied. Asymptotic normality of approximate $M$-estimators based on the Itô and Fisk–Stratonovich approximations of a continuous $M$-functional are obtained under a moderately increasing experimental design condition through the weak convergence of approximate $M$-ratio random fields. The derivatives of an approximate log-$M$ functional based on the Itô approximation are martingales, but the derivatives of a log-$M$ functional based on the Fisk–Stratonovich approximation are not martingales, but the average of forward and backward martingales. The averaged forward and backward martingale approximations have a faster rate of convergence than the forward martingale approximations.
Keywords: Itô stochastic differential equations, model misspecification, discrete observations, moderately increasing experimental design, approximate $M$-estimators, local asymptotic normality, robustness, weak convergence of random fields.
Mots-clés : diffusion processes
@article{THSP_2009_15_2_a4,
     author = {Jaya P. N. Bishwal},
     title = {$M$-estimation for discretely sampled diffusions},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {62--83},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a4/}
}
TY  - JOUR
AU  - Jaya P. N. Bishwal
TI  - $M$-estimation for discretely sampled diffusions
JO  - Teoriâ slučajnyh processov
PY  - 2009
SP  - 62
EP  - 83
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a4/
LA  - en
ID  - THSP_2009_15_2_a4
ER  - 
%0 Journal Article
%A Jaya P. N. Bishwal
%T $M$-estimation for discretely sampled diffusions
%J Teoriâ slučajnyh processov
%D 2009
%P 62-83
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a4/
%G en
%F THSP_2009_15_2_a4
Jaya P. N. Bishwal. $M$-estimation for discretely sampled diffusions. Teoriâ slučajnyh processov, Tome 15 (2009) no. 2, pp. 62-83. http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a4/