On optimal stopping for time-dependent gain function
Teoriâ slučajnyh processov, Tome 15 (2009) no. 2, pp. 54-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

General questions of optimal stopping for an inhomogeneous Markov process for a time-dependent gain function are investigated. The connection between the optimal stopping problems for an inhomogeneous standard Markov process and the corresponding homogeneous Markov process constructed in the extended state space is established. A detailed characterization of a value-function and the limit procedure for its construction in the problem of optimal stopping of an inhomogeneous Markov process is given. The form of $\varepsilon$-optimal (optimal) stopping times is also found.
Keywords: Inhomogeneous Markov process, stopping time, payoff, excessive function, extension of state space, universal completion.
@article{THSP_2009_15_2_a3,
     author = {P. Babilua and B. Dochviri and B. Meladze},
     title = {On optimal stopping for time-dependent gain function},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {54--61},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a3/}
}
TY  - JOUR
AU  - P. Babilua
AU  - B. Dochviri
AU  - B. Meladze
TI  - On optimal stopping for time-dependent gain function
JO  - Teoriâ slučajnyh processov
PY  - 2009
SP  - 54
EP  - 61
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a3/
LA  - en
ID  - THSP_2009_15_2_a3
ER  - 
%0 Journal Article
%A P. Babilua
%A B. Dochviri
%A B. Meladze
%T On optimal stopping for time-dependent gain function
%J Teoriâ slučajnyh processov
%D 2009
%P 54-61
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a3/
%G en
%F THSP_2009_15_2_a3
P. Babilua; B. Dochviri; B. Meladze. On optimal stopping for time-dependent gain function. Teoriâ slučajnyh processov, Tome 15 (2009) no. 2, pp. 54-61. http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a3/

[1] A. Shiryaev, Optimal Stopping Rules, Springer, Berlin, 1978

[2] B. Dochviri, M. Shashiashvili, “On optimal stopping of a homogeneous Markov process on a finite time interval”, Math. Nachr., 156 (1992), 269–281 (in Russian)

[3] R. Blumental, R. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968

[4] C. Dellacherie, P. Meyer, Probabilities and Potential, North-Holland Math. Studies, 29, North-Holland, Amsterdam, 1978

[5] B. Dochviri, “Optimal stopping of a nonterminating homogeneous standard Markov process on a finite time interval”, Proc. Steklov Inst. Math., 1994, no. 4, 97–106

[6] B. Dochviri, “On optimal stopping of an inhomogeneous standard Markov process”, Georgian Math. J., 2:4 (1995), 335–346

[7] P. Babilua, I. Bokuchava, B. Dochviri, M. Shashiashvili, “Optimal stopping problem on a finite time interval”, Bull. Georgian Acad. Sci., 173:2 (2006), 250–253