Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2009_15_2_a2, author = {Rovshan Aliyev and Tahir Khaniev and Nurgul Okur Bekar}, title = {Weak convergence theorem for the ergodic distribution of the renewal-reward process with a gamma distributed interference of chance}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {42--53}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a2/} }
TY - JOUR AU - Rovshan Aliyev AU - Tahir Khaniev AU - Nurgul Okur Bekar TI - Weak convergence theorem for the ergodic distribution of the renewal-reward process with a gamma distributed interference of chance JO - Teoriâ slučajnyh processov PY - 2009 SP - 42 EP - 53 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a2/ LA - en ID - THSP_2009_15_2_a2 ER -
%0 Journal Article %A Rovshan Aliyev %A Tahir Khaniev %A Nurgul Okur Bekar %T Weak convergence theorem for the ergodic distribution of the renewal-reward process with a gamma distributed interference of chance %J Teoriâ slučajnyh processov %D 2009 %P 42-53 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a2/ %G en %F THSP_2009_15_2_a2
Rovshan Aliyev; Tahir Khaniev; Nurgul Okur Bekar. Weak convergence theorem for the ergodic distribution of the renewal-reward process with a gamma distributed interference of chance. Teoriâ slučajnyh processov, Tome 15 (2009) no. 2, pp. 42-53. http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a2/
[1] G. Alsmeyer, “Second-order approximations for certain stopped sums in extended renewal theory”, Advances in Applied Probability, 20 (1988), 391–410
[2] M. Brown, H. Solomon, “A second-order approximation for the variance of a renewal reward process”, Stochastic Processes and Applications, 3 (1975), 301–314
[3] A. Csenki, “Asymptotics for renewal-reward processes with retrospective reward structure”, Operation Research and Letters, 26 (2000), 201–209
[4] W. Feller, An Introduction to Probability Theory and Its Applications, v. II, Wiley, New York, 1971
[5] I. I. Gikhman, A. V. Skorohod, Theory of Stochastic Processes, v. II, Springer, Berlin, 1975
[6] J. B. Levy, M. S. Taqqu, “Renewal reward processes with heavy-tailed inter-renewal times and heavy-tailed rewards”, Bernoulli, 6:1 (2000), 23–44
[7] W. S. Jewell, “Fluctuation of a Renewal-Reward Process”, Journal of Mathematical Analysis and Applications, 19 (1967), 309–329
[8] T. A. Khaniyev, “About the moments of a generalized renewal process”, Transactions of NAS of Azerbaijan. Series of Physical Technical and Mathematical Sciences, 25:1 (2005), 95–100
[9] T. A. Khaniyev, T. Kesemen, R. T. Aliyev, A. Kokangul, “Asymptotic expansions for the moments of a semi-Markovian random walk with an exponential distributed interference of chance”, Statistics and Probability Letters, 78:6 (2008), 785–793
[10] S. M. Ross, Stochastic Processes, John Wiley Sons, New York, 1996