Exponential rate of $L_p$-convergence of intrinsic martingales in supercritical branching random walks
Teoriâ slučajnyh processov, Tome 15 (2009) no. 2, pp. 1-18
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $W_n, n\in\mathbb{N}_{0}$ be an intrinsic martingale with almost sure limit $W$ in a supercritical branching random walk. We provide criteria for the $L_p$-convergence of the series $\sum_{n\ge 0} e^{an}(W-W_n)$ for $p>1$ and $a>0$. The result may be viewed as a statement about the exponential rate of convergence of ${\mathbb E} |W-W_n|^p$ to zero.
Keywords:
Supercritical branching random walk, weighted branching process, random series, Burkholder's inequality.
Mots-clés : martingale, $L_p$-convergence
Mots-clés : martingale, $L_p$-convergence
@article{THSP_2009_15_2_a0,
author = {G. Alsmeyer and A. Iksanov and S. Polotskiy and U. R\"osler},
title = {Exponential rate of $L_p$-convergence of intrinsic martingales in supercritical branching random walks},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {1--18},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a0/}
}
TY - JOUR AU - G. Alsmeyer AU - A. Iksanov AU - S. Polotskiy AU - U. Rösler TI - Exponential rate of $L_p$-convergence of intrinsic martingales in supercritical branching random walks JO - Teoriâ slučajnyh processov PY - 2009 SP - 1 EP - 18 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a0/ LA - en ID - THSP_2009_15_2_a0 ER -
%0 Journal Article %A G. Alsmeyer %A A. Iksanov %A S. Polotskiy %A U. Rösler %T Exponential rate of $L_p$-convergence of intrinsic martingales in supercritical branching random walks %J Teoriâ slučajnyh processov %D 2009 %P 1-18 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a0/ %G en %F THSP_2009_15_2_a0
G. Alsmeyer; A. Iksanov; S. Polotskiy; U. Rösler. Exponential rate of $L_p$-convergence of intrinsic martingales in supercritical branching random walks. Teoriâ slučajnyh processov, Tome 15 (2009) no. 2, pp. 1-18. http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a0/