Exponential rate of $L_p$-convergence of intrinsic martingales in supercritical branching random walks
Teoriâ slučajnyh processov, Tome 15 (2009) no. 2, pp. 1-18

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $W_n, n\in\mathbb{N}_{0}$ be an intrinsic martingale with almost sure limit $W$ in a supercritical branching random walk. We provide criteria for the $L_p$-convergence of the series $\sum_{n\ge 0} e^{an}(W-W_n)$ for $p>1$ and $a>0$. The result may be viewed as a statement about the exponential rate of convergence of ${\mathbb E} |W-W_n|^p$ to zero.
Keywords: Supercritical branching random walk, weighted branching process, random series, Burkholder's inequality.
Mots-clés : martingale, $L_p$-convergence
@article{THSP_2009_15_2_a0,
     author = {G. Alsmeyer and A. Iksanov and S. Polotskiy and U. R\"osler},
     title = {Exponential rate of $L_p$-convergence of intrinsic martingales in supercritical branching random walks},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a0/}
}
TY  - JOUR
AU  - G. Alsmeyer
AU  - A. Iksanov
AU  - S. Polotskiy
AU  - U. Rösler
TI  - Exponential rate of $L_p$-convergence of intrinsic martingales in supercritical branching random walks
JO  - Teoriâ slučajnyh processov
PY  - 2009
SP  - 1
EP  - 18
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a0/
LA  - en
ID  - THSP_2009_15_2_a0
ER  - 
%0 Journal Article
%A G. Alsmeyer
%A A. Iksanov
%A S. Polotskiy
%A U. Rösler
%T Exponential rate of $L_p$-convergence of intrinsic martingales in supercritical branching random walks
%J Teoriâ slučajnyh processov
%D 2009
%P 1-18
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a0/
%G en
%F THSP_2009_15_2_a0
G. Alsmeyer; A. Iksanov; S. Polotskiy; U. Rösler. Exponential rate of $L_p$-convergence of intrinsic martingales in supercritical branching random walks. Teoriâ slučajnyh processov, Tome 15 (2009) no. 2, pp. 1-18. http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a0/