Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2009_15_1_a6, author = {W. I. Skrypnik}, title = {On the evolution of {Gibbs} states of the lattice gradient stochastic dynamics of interacting oscillators}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {61--82}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a6/} }
TY - JOUR AU - W. I. Skrypnik TI - On the evolution of Gibbs states of the lattice gradient stochastic dynamics of interacting oscillators JO - Teoriâ slučajnyh processov PY - 2009 SP - 61 EP - 82 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a6/ LA - en ID - THSP_2009_15_1_a6 ER -
W. I. Skrypnik. On the evolution of Gibbs states of the lattice gradient stochastic dynamics of interacting oscillators. Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 61-82. http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a6/
[1] S. Albeverio, Yu. G. Kondratiev, M. Rockner, Uniqueness for continuous spin systems on a lattice, SFB 237 - Preprint Nr. 219, Institut für Mathematik, Ruhr-Universitat-Bohum, April, 1994
[2] H. Doss, G. Royer, “Prosessus de diffusion associe aux measures de Gibbs sur ${\mathbb R}^{Z^d}$”, Z. Wahrsch. Verw. Geb., 46 (1978), 107–124 | DOI | MR
[3] P. Cattiaux, S. Roelly, H. Zessin, Characterization de diffusions comme measure de Gibbs et consequences sur les systemes reversibles, 589/3/1993, Universitat Bielefeld preprint
[4] J. D. Deutschel, “Infinite-dimensional diffusion processes as Gibbs measures”, Prob. Th. Rel. Fields, 76 (1987), 325–340 | DOI | MR
[5] J. Dimock, “A cluster expansion for stochastic lattice fields”, Journ. Stat. Phys., 58:5/6 (1990), 1181–1207 | DOI | MR | Zbl
[6] G. E. Shilov, B. A. Gurevich, Integral, measure and derivative, Nauka, Moscow, 1967 | MR
[7] H. Kunz, “Analyticity and clustering properties of unbounded spin systems”, Commun. Math. Phys., 59 (1978), 53–69 | DOI | MR
[8] Hui-Hsiung Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, eds. A. Dold and B. Eckmann, Springer, Berlin, 1975 | MR | Zbl
[9] G. Royer, “Prosessus de diffusion associe a certains modeles d’Ising a spin continus”, Z. Wahrsch. Verw. Geb., 46 (1979), 165–176 | DOI | MR | Zbl
[10] D. Ruelle, “Probability estimates for continuous spin systems”, Commun. Math. Phys., 50 (1976), 189–193 | DOI | MR
[11] D. Ruelle, Statistical mechanics. Rigorous results, Benjamin, New York, 1969 | MR | Zbl
[12] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Academic Press, New York, 1975 | MR | Zbl
[13] W. Skrypnik, “On polymer expansion for Gibbs states of non-equilibrium systems of interacting Brownian oscillators”, Ukrainian Math. Journ., 55:12 (2003) | MR
[14] W. Skrypnik, “Correlation functions of infinite systems of interacting Brownian particles. Local in time evolution close to equilibrium”, Journ. Stat.Phys, 35:5/6 (1985), 587–602 | MR
[15] W. Skrypnik, “Long-range order in non-equilibrium systems of interacting Brownian linear oscillators”, Journ. Stat. Phys., 111:1/2 (2003) | MR | Zbl