On the evolution of Gibbs states of the lattice gradient stochastic dynamics of interacting oscillators
Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 61-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Grand canonical correlation functions of stochastic(Brownian) lattice linear oscillators interacting via a pair short-range potential are found in the thermodynamic limits at low activities and on a finite time interval. It is proved that their sequence is a weak solution of the BBGKY-type gradient diffision hierarchy. The initial correlation functions are Gibbsian, which corresponds to many-body positive finite-range and short-range non-positive pair interaction potentials. The utilized technique is based on an application of the Feynman–Kac formula for solutions of the Smoluchowski equation and a representation of the time-dependent correlation functions in terms of correlation functions of a Gibbs lattice oscillator path system with manybody interaction potentials.
Keywords: Lattice gradient stochastic dynamics, Gibbs state, grand canonical correlation functions.
@article{THSP_2009_15_1_a6,
     author = {W. I. Skrypnik},
     title = {On the evolution of {Gibbs} states of the lattice gradient stochastic dynamics of interacting oscillators},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {61--82},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a6/}
}
TY  - JOUR
AU  - W. I. Skrypnik
TI  - On the evolution of Gibbs states of the lattice gradient stochastic dynamics of interacting oscillators
JO  - Teoriâ slučajnyh processov
PY  - 2009
SP  - 61
EP  - 82
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a6/
LA  - en
ID  - THSP_2009_15_1_a6
ER  - 
%0 Journal Article
%A W. I. Skrypnik
%T On the evolution of Gibbs states of the lattice gradient stochastic dynamics of interacting oscillators
%J Teoriâ slučajnyh processov
%D 2009
%P 61-82
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a6/
%G en
%F THSP_2009_15_1_a6
W. I. Skrypnik. On the evolution of Gibbs states of the lattice gradient stochastic dynamics of interacting oscillators. Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 61-82. http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a6/

[1] S. Albeverio, Yu. G. Kondratiev, M. Rockner, Uniqueness for continuous spin systems on a lattice, SFB 237 - Preprint Nr. 219, Institut für Mathematik, Ruhr-Universitat-Bohum, April, 1994

[2] H. Doss, G. Royer, “Prosessus de diffusion associe aux measures de Gibbs sur ${\mathbb R}^{Z^d}$”, Z. Wahrsch. Verw. Geb., 46 (1978), 107–124 | DOI | MR

[3] P. Cattiaux, S. Roelly, H. Zessin, Characterization de diffusions comme measure de Gibbs et consequences sur les systemes reversibles, 589/3/1993, Universitat Bielefeld preprint

[4] J. D. Deutschel, “Infinite-dimensional diffusion processes as Gibbs measures”, Prob. Th. Rel. Fields, 76 (1987), 325–340 | DOI | MR

[5] J. Dimock, “A cluster expansion for stochastic lattice fields”, Journ. Stat. Phys., 58:5/6 (1990), 1181–1207 | DOI | MR | Zbl

[6] G. E. Shilov, B. A. Gurevich, Integral, measure and derivative, Nauka, Moscow, 1967 | MR

[7] H. Kunz, “Analyticity and clustering properties of unbounded spin systems”, Commun. Math. Phys., 59 (1978), 53–69 | DOI | MR

[8] Hui-Hsiung Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, eds. A. Dold and B. Eckmann, Springer, Berlin, 1975 | MR | Zbl

[9] G. Royer, “Prosessus de diffusion associe a certains modeles d’Ising a spin continus”, Z. Wahrsch. Verw. Geb., 46 (1979), 165–176 | DOI | MR | Zbl

[10] D. Ruelle, “Probability estimates for continuous spin systems”, Commun. Math. Phys., 50 (1976), 189–193 | DOI | MR

[11] D. Ruelle, Statistical mechanics. Rigorous results, Benjamin, New York, 1969 | MR | Zbl

[12] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Academic Press, New York, 1975 | MR | Zbl

[13] W. Skrypnik, “On polymer expansion for Gibbs states of non-equilibrium systems of interacting Brownian oscillators”, Ukrainian Math. Journ., 55:12 (2003) | MR

[14] W. Skrypnik, “Correlation functions of infinite systems of interacting Brownian particles. Local in time evolution close to equilibrium”, Journ. Stat.Phys, 35:5/6 (1985), 587–602 | MR

[15] W. Skrypnik, “Long-range order in non-equilibrium systems of interacting Brownian linear oscillators”, Journ. Stat. Phys., 111:1/2 (2003) | MR | Zbl