On the evolution of Gibbs states of the lattice gradient stochastic dynamics of interacting oscillators
Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 61-82
Voir la notice de l'article provenant de la source Math-Net.Ru
Grand canonical correlation functions of stochastic(Brownian) lattice linear oscillators interacting via a pair
short-range potential are found in the thermodynamic
limits at low activities and on a finite time interval. It is proved that their sequence
is a weak solution of the BBGKY-type gradient diffision hierarchy. The initial correlation functions are Gibbsian, which corresponds to many-body positive finite-range
and short-range non-positive pair interaction potentials. The utilized technique is
based on an application of the Feynman–Kac formula for solutions of the Smoluchowski equation and a representation of the time-dependent correlation functions in
terms of correlation functions of a Gibbs lattice oscillator path system with manybody interaction potentials.
Keywords:
Lattice gradient stochastic dynamics, Gibbs state, grand canonical correlation functions.
@article{THSP_2009_15_1_a6,
author = {W. I. Skrypnik},
title = {On the evolution of {Gibbs} states of the lattice gradient stochastic dynamics of interacting oscillators},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {61--82},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a6/}
}
TY - JOUR AU - W. I. Skrypnik TI - On the evolution of Gibbs states of the lattice gradient stochastic dynamics of interacting oscillators JO - Teoriâ slučajnyh processov PY - 2009 SP - 61 EP - 82 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a6/ LA - en ID - THSP_2009_15_1_a6 ER -
W. I. Skrypnik. On the evolution of Gibbs states of the lattice gradient stochastic dynamics of interacting oscillators. Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 61-82. http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a6/