Poisson approximation of processes with locally independent increments with Markov switching
Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 40-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the weak convergence of additive functionals of processes with locally independent increments and with Markov switching in the scheme of the Poisson approximation is proved. For the relative compactness, a method proposed by R. Liptser for semimartingales is used with a modification, where we apply a solution of a singular perturbation problem instead of the ergodic theorem.
Keywords: semimartingale, Markov process, locally independent increments process, piecewise deterministic Markov process, weak convergence
Mots-clés : Poisson approximation, singular perturbation.
@article{THSP_2009_15_1_a4,
     author = {V. S. Koroliuk and N. Limnios},
     title = {Poisson approximation of processes with locally independent increments with {Markov} switching},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {40--48},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a4/}
}
TY  - JOUR
AU  - V. S. Koroliuk
AU  - N. Limnios
TI  - Poisson approximation of processes with locally independent increments with Markov switching
JO  - Teoriâ slučajnyh processov
PY  - 2009
SP  - 40
EP  - 48
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a4/
LA  - en
ID  - THSP_2009_15_1_a4
ER  - 
%0 Journal Article
%A V. S. Koroliuk
%A N. Limnios
%T Poisson approximation of processes with locally independent increments with Markov switching
%J Teoriâ slučajnyh processov
%D 2009
%P 40-48
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a4/
%G en
%F THSP_2009_15_1_a4
V. S. Koroliuk; N. Limnios. Poisson approximation of processes with locally independent increments with Markov switching. Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 40-48. http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a4/

[1] A. D. Barbour, L. Holst, S. Janson, Poisson Approximation, Oxford University Press, Oxford, 1992 | MR | Zbl

[2] A. D. Barbour, L. H. Y. Chen (eds.), An introduction to Stein’s method, Lecture Note Series. Institute for Mathematical Sciences, National University of Singapore, 4, World Scientific, Singapore, 2005 | MR | Zbl

[3] A. D. Barbour, L. H. Y. Chen (eds.), Stein’s method and applications, Lecture Note Series. Institute for Mathematical Sciences, National University of Singapore, 5, World Scientific, Singapore, 2005 | MR | Zbl

[4] E. Çinlar, J. Jacod, P. Protter, “Semimartingale and Markov processes”, Z. Wahrschein. verw. Gebiete, 54 (1980), 161-–219 | DOI | MR

[5] M. H. A. Davis, Markov Models and Optimization, Chapman, 1993 | MR | Zbl

[6] S. N. Ethier, T. G. Kurtz, Markov Processes: Characterization and convergence, Wiley, New York, 1986 | MR | Zbl

[7] J. Jacod, A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer, Berlin, 1987 | MR | Zbl

[8] V. S. Koroliuk, N. Limnios, Stochastic Systems in Merging Phase Space, World Scientific, Singapore, 2005 | MR | Zbl

[9] V. S. Koroliuk, N. Limnios, “Poisson approximation of increment processes with Markov switching”, Theor. Probab. Appl., 49:4 (2005), 629-–644 | DOI | MR

[10] H. J. Kushner, Weak Convergence Methods and Singular Perturbed Stochastic Control and Filtering Problems, Birkhäuser, Boston, 1990 | MR

[11] R. Sh. Liptser, “The Bogolyubov averaging principle for semimartingales”, Proceedings of the Steklov Institute of Mathematics, 202:4 (1994), 1-–12 | MR

[12] R. Sh. Liptser, A. N. Shiryayev, Theory of Martingales, Kluwer, Dordrecht, 1989 | MR | Zbl

[13] D. W. Stroock, S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer, Berlin, 1979 | MR | Zbl

[14] A. V. Skorokhod, Asymptotic Methods in the Theory of Stochastic Differential Equations, AMS, Providence, 1989 | Zbl

[15] F. C. Hoppensteadt, H. Salehi, A. V. Skorokhod, Random Perturbation Method with Application in Science and Engineering, Springer, Berlin, 2002 | MR

[16] D. S. Silvestrov, Limit Theorems for Randomly Stopped Stochastic Processes, Probability and its Applications, Springer, Berlin, 2004 | DOI | MR | Zbl

[17] M. N. Sviridenko, “Martingale approach to limit theorems for semi-Markov processes”, Theor. Probab. Appl., 34:3 (1986), 540-–545 | DOI | MR