The explicit probability distribution of a six-dimensional random flight
Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 33-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the symmetric random motion with finite speed $X(t)$ in the Euclidean space ${\mathbb R}^6$ subject to the control of a homogeneous Poisson process. The explicit probability distribution of $X(t)$, $t > 0$, is obtained.
Keywords: Random motion, random flight, transport process, random evolution, finite speed, explicit probability distribution.
@article{THSP_2009_15_1_a3,
     author = {Alexander. D. Kolesnik},
     title = {The explicit probability distribution of a six-dimensional random flight},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {33--39},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a3/}
}
TY  - JOUR
AU  - Alexander. D. Kolesnik
TI  - The explicit probability distribution of a six-dimensional random flight
JO  - Teoriâ slučajnyh processov
PY  - 2009
SP  - 33
EP  - 39
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a3/
LA  - en
ID  - THSP_2009_15_1_a3
ER  - 
%0 Journal Article
%A Alexander. D. Kolesnik
%T The explicit probability distribution of a six-dimensional random flight
%J Teoriâ slučajnyh processov
%D 2009
%P 33-39
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a3/
%G en
%F THSP_2009_15_1_a3
Alexander. D. Kolesnik. The explicit probability distribution of a six-dimensional random flight. Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 33-39. http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a3/

[1] H. Bateman, A. Erdely, Tables of Integral Transforms, McGraw-Hill, New York, 1954

[2] I. S. Gradshtein, I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products, Academic Press, New York, 1980

[3] A. D. Kolesnik, “Random motions at finite speed in higher dimensions”, J. Statist. Phys., 131 (2008), 1039–1065 | DOI | MR | Zbl

[4] A. D. Kolesnik, “Symmetric random evolution in the space ${\mathbb R}^6$”, Bull. Acad. Sci. Moldova, Ser. Math., 2(57) (2008), 114-–117 | MR | Zbl

[5] A. D. Kolesnik, “An asymptotic formula for the density of a multidimensional random evolution with rare Poissonian switchings”, Ukrain. Math. J., 60:12 (2008), 1631-–1641 | DOI | MR | Zbl

[6] A. D. Kolesnik, “A note on planar random motion at finite speed”, J. Appl. Probab., 44 (2007), 838-–842 | DOI | MR | Zbl

[7] A. D. Kolesnik, “A four-dimensional random motion at finite speed”, J. Appl. Probab., 43 (2006), 1107–-1118 | DOI | MR | Zbl

[8] A. D. Kolesnik, E. Orsingher, “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Probab., 42 (2005), 1168-–1182 | DOI | MR | Zbl

[9] J. Masoliver, J. M. Porrá, G. H. Weiss, “Some two and three-dimensional persistent random walks”, Physica A, 193 (1993), 469-–482 | DOI

[10] G. Papanicolaou, “Asymptotic analysis of transport processes”, Bull. Amer. Math. Soc., 81 (1975), 330-–392 | DOI | MR | Zbl

[11] M. Pinsky, “Isotropic transport process on a Riemannian manifold”, Trans. Amer. Math. Soc., 218 (1976), 353-–360 | DOI | MR | Zbl

[12] W. Stadje, “Exact probability distributions for non-correlated random walk models”, J. Statist. Phys., 56 (1989), 415-–435 | DOI | MR | Zbl

[13] W. Stadje, “The exact probability distribution of a two-dimensional random walk”, J. Statist. Phys., 46 (1987), 207-–216 | DOI | MR

[14] E. V. Tolubinsky, The Theory of Transfer Processes, Naukova Dumka, Kiev, 1969

[15] V. S. Vladimirov, The Equations of Mathematical Physics, Nauka, M., 1981 | MR