Weak convergence of additive functionals of a sequence of
Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 15-32

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider additive functionals $\phi_n$, $n\geq1$ defined on a sequence of Markov chains that weakly converges to a Markov process. We give sufficient condition for $\phi_n$, $n\geq1$ to converge in distribution, formulated in the terms of their characteristics (i.e. expectations). This condition generalizes Dynkin's theorem on convergence of $W$-functionals of a time homogeneous Markov process.
Keywords: Additive functional, characteristic of additive functional, $W$-functional, local time, Markov approximation.
@article{THSP_2009_15_1_a2,
     author = {Yuri. I. Kartashov and Alexey. M. Kulik},
     title = {Weak convergence of additive functionals of a sequence of},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {15--32},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a2/}
}
TY  - JOUR
AU  - Yuri. I. Kartashov
AU  - Alexey. M. Kulik
TI  - Weak convergence of additive functionals of a sequence of
JO  - Teoriâ slučajnyh processov
PY  - 2009
SP  - 15
EP  - 32
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a2/
LA  - en
ID  - THSP_2009_15_1_a2
ER  - 
%0 Journal Article
%A Yuri. I. Kartashov
%A Alexey. M. Kulik
%T Weak convergence of additive functionals of a sequence of
%J Teoriâ slučajnyh processov
%D 2009
%P 15-32
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a2/
%G en
%F THSP_2009_15_1_a2
Yuri. I. Kartashov; Alexey. M. Kulik. Weak convergence of additive functionals of a sequence of. Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 15-32. http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a2/