Weak convergence of additive functionals of a sequence of
Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 15-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider additive functionals $\phi_n$, $n\geq1$ defined on a sequence of Markov chains that weakly converges to a Markov process. We give sufficient condition for $\phi_n$, $n\geq1$ to converge in distribution, formulated in the terms of their characteristics (i.e. expectations). This condition generalizes Dynkin's theorem on convergence of $W$-functionals of a time homogeneous Markov process.
Keywords: Additive functional, characteristic of additive functional, $W$-functional, local time, Markov approximation.
@article{THSP_2009_15_1_a2,
     author = {Yuri. I. Kartashov and Alexey. M. Kulik},
     title = {Weak convergence of additive functionals of a sequence of},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {15--32},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a2/}
}
TY  - JOUR
AU  - Yuri. I. Kartashov
AU  - Alexey. M. Kulik
TI  - Weak convergence of additive functionals of a sequence of
JO  - Teoriâ slučajnyh processov
PY  - 2009
SP  - 15
EP  - 32
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a2/
LA  - en
ID  - THSP_2009_15_1_a2
ER  - 
%0 Journal Article
%A Yuri. I. Kartashov
%A Alexey. M. Kulik
%T Weak convergence of additive functionals of a sequence of
%J Teoriâ slučajnyh processov
%D 2009
%P 15-32
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a2/
%G en
%F THSP_2009_15_1_a2
Yuri. I. Kartashov; Alexey. M. Kulik. Weak convergence of additive functionals of a sequence of. Teoriâ slučajnyh processov, Tome 15 (2009) no. 1, pp. 15-32. http://geodesic.mathdoc.fr/item/THSP_2009_15_1_a2/

[1] E. B. Dynkin, Markov processes, Fizmatgiz, Moscow, 1963 (in Russian) | MR | Zbl

[2] K. L. Chung, G. A. Hunt, “On the zeros of $\sum^n_1\pm$”, Ann. of Math., 50 (1949), 385–400 | DOI | MR | Zbl

[3] A. V. Skorokhod, M. P. Slobodeniuk, Limit theorems for random walks, Naukova Dumka, Kiev, 1970 (in Russian) | MR

[4] A. N. Borodin, I. A. Ibragimov, “Limit theorems for the functionals of random walks”, Proc. of the Mathematical Institute of R. Acad. Sci., 195, Nauka, St.-P., 1994 (in Russian) | MR | Zbl

[5] P. Revesz, Random walk in random and nonrandom environments, World Sci. Publ., Teaneck, NJ, 1990. | MR

[6] R. F. Bass, D. Khoshnevisan, “Local times on curves and uniform invariance principles”, Prob. Theory Rel. Fields, 92 (1992), 465-–492 | DOI | MR | Zbl

[7] A. S. Cherny, A. N. Shiryaev, M. Yor, “Limit behavior of the “horizontal-vertical” random walk and some extensions of the Donsker–Prokhorov invariance principle”, Probability theory and its applications, 47:3 (2002), 498-–517 | MR | Zbl

[8] I. I. Gikhman, “Some limit theorems for the number of intersections of a boundary of a given domain by a random function”, Sci. notes of Kiev Univ., 16:10 (1957), 149-–164 (in Ukrainian)

[9] I. I. Gikhman, “Asymptotic distributions for the number of intersections of a boundary of a domain by a random function”, Visnyk of Kiev Univ., Ser. Astron., Math., and Mech., 1:1 (1958), 25-–46 (in Ukrainian)

[10] N. I. Portenko, “Integral equations and limit theorems for additive functionals of Markov processes”, Probability theory and its applications, 12:3 (1967), 551-–558 (in Russian) | DOI | MR

[11] N. I. Portenko, “The development of I. I. Gikhman’s idea concerning the methods for investigating local behavior of diffusion processes and their weakly convergent sequences”, Probab. Theory and ith. Stat., 50 (1994), 7–22 | MR | Zbl

[12] A. M. Kulik, “Markov approximation of stable processes by random walks”, Theory of Stochastic Processes, 12(28):1-2 (2006), 87-–93 | MR | Zbl

[13] W. Feller, An introduction to probability theory and its applications, Wiley, New York, 1971 | MR | MR | Zbl

[14] A. V. Skorokhod, Studies in theory of stochastic processes, Kiev Univ., Kiev, 1961 (in Russian)

[15] J. Jacod, A. Shiryaev, Limit Theorems for Stochastic Processes, Springer, Berlin, 1987 | MR | Zbl

[16] T. G. Kurtz, Ph. Protter, “Weak limit theorems for stochastic integrals and SDE’s”, Annals of Probability, 19:3 (1991), 1035-–1070 | DOI | MR | Zbl

[17] T. Yamada, S. Watanabe, “On the uniqueness of solutions of stochastic differential equations”, J. Math. Kyoto Univ., 11 (1971), 156-–167 | MR

[18] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary related variables, Nauka, M., 1965 (in Russian)

[19] Yu. N. Kartashov, “Sufficient conditions for convergence of a local time type functionals of a Markov approximations”, Probab. Theory and Math. Stat., 2008, no. 77, 59-–78 (in Ukrainian) | MR

[20] A. M. Kulik, “Difference approximation for local times of multidimensional diffusions”, Probab. Theory and Math. Stat., 2008, no. 78, 67-–83 (in Ukrainian) ; English preprint: arXiv: math/0702175 | MR

[21] A. M. Kulik, “Malliavin calculus for difference approximations of multidimensional diffusions: truncated local limit theorem”, Ukrainian Math. Journal, 2008, no. 3, 340–381, arXiv: 0801.2319 | MR | Zbl

[22] A. V. Bulinskii, A. N. Shiryaev, Theory of Random Processes, Fizmatlit, M., 2003 (in Russian)

[23] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1991 | MR | Zbl

[24] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968 | MR | Zbl