Approximation of fractional brownian motion with associated hurst index separated from 1 by stochastic integrals of linear power functions
Teoriâ slučajnyh processov, Tome 14 (2008) no. 3, pp. 1-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we present the best uniform approximation of the fractional Brownian motion in space $ L_\infty([0, T]; L_2 (\Omega))$ by martingales of the following type $\int^t_0a(s)dW_s,$ where $W$ is a Wiener process,$a$ is a function defined by $a(s)=k_1+k_2s^\alpha, k_1,k_2\in{\mathbb R}, s\in[0, T],$ $\alpha=H-1/2,$ $H$ is the Hurst index, separated from 1, associated with the fractional Brownian motion.
Keywords: Fractional Brownian motion, Wiener integral, approximation.
@article{THSP_2008_14_3_a0,
     author = {Oksana Banna and Yuliya Mishura},
     title = {Approximation of fractional brownian motion with associated hurst index separated from 1 by stochastic integrals of linear power functions},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_3_a0/}
}
TY  - JOUR
AU  - Oksana Banna
AU  - Yuliya Mishura
TI  - Approximation of fractional brownian motion with associated hurst index separated from 1 by stochastic integrals of linear power functions
JO  - Teoriâ slučajnyh processov
PY  - 2008
SP  - 1
EP  - 16
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2008_14_3_a0/
LA  - en
ID  - THSP_2008_14_3_a0
ER  - 
%0 Journal Article
%A Oksana Banna
%A Yuliya Mishura
%T Approximation of fractional brownian motion with associated hurst index separated from 1 by stochastic integrals of linear power functions
%J Teoriâ slučajnyh processov
%D 2008
%P 1-16
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2008_14_3_a0/
%G en
%F THSP_2008_14_3_a0
Oksana Banna; Yuliya Mishura. Approximation of fractional brownian motion with associated hurst index separated from 1 by stochastic integrals of linear power functions. Teoriâ slučajnyh processov, Tome 14 (2008) no. 3, pp. 1-16. http://geodesic.mathdoc.fr/item/THSP_2008_14_3_a0/

[1] Androshchuk, T., “Approximation of the stochastic integral of fractional Brownian motion of absolute continuous processes”, Theory of Probability and Math.Statistics, 73 (2005), 11–20 (Ukrainian) | MR

[2] Banna, O. L., Mishura, Y. S., “The simpliest martingales of the best approximation of fractional Brownian motion”, Bulletin of Kiev National Taras Shevchenko University. Mathematics and Mechanics, 19 (2008), 38–43 (Ukrainian) | Zbl

[3] Banna, O. L., “Approximation of fractional Brownian motion with Hurst index close to 1, by stochastic integrals of linear exponential function”, Applied Statistics. Actuarial and Financial Mathematics, 1 (2007), 60–67 (Ukrainian) | Zbl

[4] Mishura, Y. S., Banna, O. L., “Approximation of fractional Brownian motion by Wiener integrals”, Theory of Probability and Math. Statistics, 79 (2008), 106–115 (Ukrainian) | MR

[5] Androshchuk, T., Mishura, Y. S., “Mixed Brownian–fractional Brownian model: absence of arbitrage and related topics”, Stochastics: An Int. Journ. Prob. Stoch. Proc., 78 (2006), 281–300 | DOI | MR | Zbl

[6] Norros, I., Valkeila, E., Virtamo, J., “An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions”, Bernoulli, 5:4 (1999), 571–587 | DOI | MR | Zbl

[7] Thao, T. H., “A note on fractional Brownian motion”, Vietnam J. Math., 31:3 (2003), 255–260 | MR | Zbl