Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_3_a0, author = {Oksana Banna and Yuliya Mishura}, title = {Approximation of fractional brownian motion with associated hurst index separated from 1 by stochastic integrals of linear power functions}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {1--16}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_3_a0/} }
TY - JOUR AU - Oksana Banna AU - Yuliya Mishura TI - Approximation of fractional brownian motion with associated hurst index separated from 1 by stochastic integrals of linear power functions JO - Teoriâ slučajnyh processov PY - 2008 SP - 1 EP - 16 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2008_14_3_a0/ LA - en ID - THSP_2008_14_3_a0 ER -
%0 Journal Article %A Oksana Banna %A Yuliya Mishura %T Approximation of fractional brownian motion with associated hurst index separated from 1 by stochastic integrals of linear power functions %J Teoriâ slučajnyh processov %D 2008 %P 1-16 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2008_14_3_a0/ %G en %F THSP_2008_14_3_a0
Oksana Banna; Yuliya Mishura. Approximation of fractional brownian motion with associated hurst index separated from 1 by stochastic integrals of linear power functions. Teoriâ slučajnyh processov, Tome 14 (2008) no. 3, pp. 1-16. http://geodesic.mathdoc.fr/item/THSP_2008_14_3_a0/
[1] Androshchuk, T., “Approximation of the stochastic integral of fractional Brownian motion of absolute continuous processes”, Theory of Probability and Math.Statistics, 73 (2005), 11–20 (Ukrainian) | MR
[2] Banna, O. L., Mishura, Y. S., “The simpliest martingales of the best approximation of fractional Brownian motion”, Bulletin of Kiev National Taras Shevchenko University. Mathematics and Mechanics, 19 (2008), 38–43 (Ukrainian) | Zbl
[3] Banna, O. L., “Approximation of fractional Brownian motion with Hurst index close to 1, by stochastic integrals of linear exponential function”, Applied Statistics. Actuarial and Financial Mathematics, 1 (2007), 60–67 (Ukrainian) | Zbl
[4] Mishura, Y. S., Banna, O. L., “Approximation of fractional Brownian motion by Wiener integrals”, Theory of Probability and Math. Statistics, 79 (2008), 106–115 (Ukrainian) | MR
[5] Androshchuk, T., Mishura, Y. S., “Mixed Brownian–fractional Brownian model: absence of arbitrage and related topics”, Stochastics: An Int. Journ. Prob. Stoch. Proc., 78 (2006), 281–300 | DOI | MR | Zbl
[6] Norros, I., Valkeila, E., Virtamo, J., “An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions”, Bernoulli, 5:4 (1999), 571–587 | DOI | MR | Zbl
[7] Thao, T. H., “A note on fractional Brownian motion”, Vietnam J. Math., 31:3 (2003), 255–260 | MR | Zbl