The brownian motion process with generalized diffusion matrix and drift vector
Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 60-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the method of the classical potential theory, we have constructed a semigroup of operators that describes a multidimensional process of Brownian motion, for which the drift vector and the diffusion matrix are generalized functions.
Keywords: Brownian motion process, generalized diffusion, analytical methods.
@article{THSP_2008_14_2_a7,
     author = {Bohdan I. Kopytko and Andriy F. Novosyadlo},
     title = {The brownian motion process with generalized diffusion matrix and drift vector},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {60--70},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a7/}
}
TY  - JOUR
AU  - Bohdan I. Kopytko
AU  - Andriy F. Novosyadlo
TI  - The brownian motion process with generalized diffusion matrix and drift vector
JO  - Teoriâ slučajnyh processov
PY  - 2008
SP  - 60
EP  - 70
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a7/
LA  - en
ID  - THSP_2008_14_2_a7
ER  - 
%0 Journal Article
%A Bohdan I. Kopytko
%A Andriy F. Novosyadlo
%T The brownian motion process with generalized diffusion matrix and drift vector
%J Teoriâ slučajnyh processov
%D 2008
%P 60-70
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a7/
%G en
%F THSP_2008_14_2_a7
Bohdan I. Kopytko; Andriy F. Novosyadlo. The brownian motion process with generalized diffusion matrix and drift vector. Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 60-70. http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a7/

[1] A. D. Wentzel, “On boundary conditions for multidimensional diffusion process”, Probab. Theory Appl., 15:2 (1959), 172–185 (in Russian)

[2] N. I. Portenko, Processes of Diffusion in Environments with Membranes, Institute of Mathematics of NAS of Ukraine, Kiev, 1995 (in Ukrainian) | MR

[3] B. I. Kopytko, “Continuously Markov processes pasted on hyperplane from two Wiener processes, which suppose the generalized drift vector and generalized diffusion matrix”, The asymphtotic analysis of random evolutions. Stochastic Analysis and its Applications, Academy of Sciences of Ukraine, Institute of Mathematics, 1994, 152–166 (in Ukrainian) | MR

[4] B. V. Bazalii, “On one model problem with second derivatives on geometrical variables in boundary condition for parabolic equalization of the second order”, Mat. Zam., 1998, no. 3, 468–473 (in Russian) | DOI | MR

[5] S. V. Anulova, “Diffusion processes: discontinuous coefficients, degenerate diffusion, randomized drift”, DAN USSR, 260:5 (1981), 1036–1040 (in Russian) | MR | Zbl

[6] L. L. Zaitseva, “On stochastic continuity of generalized diffusion processes constructed as the strong solution to an SDE”, Theory of Stochastic Processes, 11 (27):12 (2005), 125–135 | MR | Zbl

[7] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian) | MR | Zbl

[8] K. Miranda, Equations with Partial Derivatives of Elliptic Type, Izd. Inostr. Liter., Moscow, 1957 (in Russian)

[9] S. D. Eidelman, Parabolic Systems, Nauka, Moscow, 1964 (in Russian) | MR | Zbl

[10] A. N. Konjenkov, “On relation between the fundamental solutions of elliptic and parabolic equations”, Diff. Uravn., 38:2 (2002), 247–256 (in Russian) | MR