Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_1_a9, author = {J. Roderick McCrorie}, title = {A role of the {Skorokhod} space in the development}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {82--94}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a9/} }
J. Roderick McCrorie. A role of the Skorokhod space in the development. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 82-94. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a9/
[1] K. M. Abadir, “A distribution generating equation for unit-root statistics”, Oxford Bulletin of Economics and Statistics, 54 (1992), 305-–323 | DOI
[2] K. M. Abadir, “On the asymptotic power of unit root tests”, Economet. Theory, 9 (1993), 189-–221 | DOI | MR
[3] T. W. Anderson, “On the asymptotic distributions of estimates of stochastic difference equations”, Annals of Mathematical Statistics, 30 (1959), 676-–687 | DOI | MR | Zbl
[4] P. Ango Nze, P. Doukhan, “Weak dependence: models and applications to econometrics”, Economet. Theory, 20 (2004), 995-–1045 | MR | Zbl
[5] B. K. Beare, A new mixing condition, Discussion Paper No. 348, University of Oxford, Department of Economics, 2007
[6] I. Berkes, L. Horváth, “Convergence of integral functionals of stochastic processes”, Economet. Theory, 22 (2006), 304-–322 | DOI | MR | Zbl
[7] S. Beveridge, C. R. Nelson, “A new approach to the decomposition of economic time series into permanent and transitory components with particular attention to measurement of the “business cycle””, J. Monetary Economics, 7 (1981), 151-–174 | DOI
[8] P. Billingsley, Convergence of Probability Measures, Wiley, 1968 | MR | Zbl
[9] G. E. P. Box, G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden–Day, 1970 | MR | Zbl
[10] S. R. Blough, “The relationship between power and level for generic unit root tests in finite samples”, J. Applied Economet., 7 (1992), 295-–308 | DOI
[11] N. H. Chan, C. Z. Wei, “Limiting distributions of least squares estimates of unstable autoregressive processes”, Annals of Statistics, 16 (1988), 367-–401 | DOI | MR | Zbl
[12] N. H. Chan, L. T. Tran, “On the first order autoregressive process with infinite variance”, Economet. Theory, 5 (1989), 354-–362 | DOI | MR
[13] Y. Chang, P. C. B. Phillips, “Time series regression with mixtures of integrated processes”, Economet. Theory, 11, 1033-–1094 | DOI | MR
[14] R. W. Cooper, Econometric models of cyclical behaviour, National Bureau of Economic Research Studies in Income and Wealth, 36, Columbia University Press, 1972
[15] J. Davidson, Stochastic Limit Theory, Oxford University Press, 1994 | MR
[16] J. Davidson, “Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes”, Journal Economet., 106 (2002), 243-–2690 | DOI | MR
[17] J. Davidson, “Asymptotic methods and functional central limit theory”, Palgrave Handbook of Econometrics, Chapter 5, v. 1, Econometric Theory, eds. T.C.Mills and K. Patterson, Palgrave Macmillan, 2006 | MR
[18] J. Davidson, When is a time series $I(0)$?, mimeo, University of Exeter, 2007 | MR
[19] J. Davidson, R. M. de Jong, “The functional central limit theorem and weak convergence to stochastic integrals II: fractionally integrated processes”, Economet. Theory, 16 (2000), 643-–666 | DOI | MR | Zbl
[20] R. Davidson, J. G. MacKinnon, “Implicit alternatives and the local power of test statistics”, Econometrica, 60 (1987), 1035–1329 | MR
[21] R. M. de Jong, “Addendum to: “Asymptotics for nonlinear transformations of integrated time series””, Economet. Theory, 20, 627-–635 | MR | Zbl
[22] R. M. de Jong, J. Davidson, “The functional central limit theorem and weak convergence to stochastic integrals I: weakly dependent processes”, Economet. Theory, 16 (2000), 621-–642 | DOI | MR | Zbl
[23] R. M. de Jong, C.-H. Wang, “Further results on the asymptotics for nonlinear transformations of integrated time series”, Economet. Theory, 21 (2005), 413-–430 | MR | Zbl
[24] D. A. Dickey, W. A. Fuller, “Distribution of the estimators for autoregressive time series with a unit root”, J. Am. Statist. Assoc., 74, 427-–431 | MR | Zbl
[25] D. A. Dickey, W. A. Fuller, “Likelihood ratio statistic for autoregressive time series with a unit root”, Econometrica, 49 (1981), 1057-–1072 | DOI | MR | Zbl
[26] M. D. Donsker, “An invariance principle for certain probability limit theorems”, Memoirs of the American Mathematical Society, 6 (1951), 1-–12 | MR
[27] P. Doukhan, S. Louhichi, “A new weak dependence condition and applications to moment inequalities”, Stochastic Process Appl., 84 (1999), 313-–342 | DOI | MR | Zbl
[28] S. M. Durlauf, P. C. B. Phillips, “Trends versus random walks in time series analysis”, Econometrica, 56 (1988), 1333-–1354 | DOI | MR | Zbl
[29] G. Elliot, T. Rothenberg, J. H. Stock, “Efficient tests for an autoregressive unit root”, Econometrica, 64, 813-–836 | DOI | MR | Zbl
[30] R. F. Engle, C. W. J. Granger, “Co-integration and error correction: representation estimation and testing”, Econometrica, 55 (1987), 251-–276 | DOI | MR | Zbl
[31] P. Erdős, M. Kac, “On certain limit theorems in the theory of probability”, Bulletin of the American Mathematical Society, 52 (1946), 292-–302 | DOI | MR | Zbl
[32] J. Faust, “Near observational equivalence and theoretical size problems with unit root tests”, Economet. Theory, 12 (1996), 724-–731 | DOI | MR
[33] J. Faust, “Conventional confidence intervals for points on spectrum have confidence level zero”, Econometrica, 67 (1999), 629-–637 | DOI | MR | Zbl
[34] L. Gil-Alaña, P. M. Robinson, “Testing of unit root and other nonstationary hypotheses in macroeconomic time series”, J. Economet., 80 (1997), 241-–268 | DOI | MR | Zbl
[35] U. Grenander, M. Rosenblatt, Statistical Analysis of Stationary Time Series, Wiley, 1958 | MR
[36] L. Giraitis, P. C. B. Phillips, “Uniform limit theory for stationary autoregression”, J. Time Ser. Anal., 27 (2006), 51-–60 | DOI | MR | Zbl
[37] C. W. J. Granger, “Some properties of time series data and their use in econometric model specification”, J. Economet., 16 (1981), 121-–130 | DOI
[38] C. W. J. Granger, Co-integrated variables and error-correcting models, unpublished, Discussion Paper 83–13, University of California, San Diego, 1983
[39] C. W. J. Granger, “Developments in the study of cointegrated economic variables”, Oxford Bulletin of Economics and Statistics, 48 (1986), 213-–228 | DOI
[40] C. W. J. Granger, P. Newbold, “Spurious regressions in econometrics”, J. Economet., 2 (1974), 111-–120 | DOI | Zbl
[41] R. E. Hall, “Stochastic implications of the life cycle-permanent income hypothesis: theory and evidence”, J. Political Economy, 96 (1978), 971-–987 | DOI
[42] J. D. Hamilton, Time Series Analysis, Princeton, 1994 | MR
[43] E. J. Hannan, Multiple Time Series, Wiley, 1970 | MR | Zbl
[44] D. F. Hendry, “Econometric modelling with cointegrated variables: an overview”, Oxford Bulletin of Economics and Statistics, 48 (1986), 201-–212 | DOI
[45] D. F. Hendry, K. Juselius, “Explaining cointegration models: part I”, Energy Journal, 21 (2000), 1-–42 | DOI
[46] D. F. Hendry, K. Juselius, “Explaining cointegration models: part II”, Energy Journal, 22 (2001), 75-–120 | DOI
[47] D. F. Hendry, A. R. Pagan, J. D. Sargan, Z. Griliches, Intrilligator M.D. (eds.), Handbook of Econometrics, v. II, Elsevier | MR
[48] N. Hernndorf, “The invariance principle for $\varphi$-mixing sequences”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 63 (1983), 97-–108 | DOI | MR
[49] N. Hernndorf, “A functional central limit theorem for $\varphi$-mixing sequences”, J. Multivariate Anal., 15 (1984), 141-–146 | DOI | MR
[50] N. Hernndorf, “A functional central limit theorem for weakly dependent sequences of random variables”, Ann. Probab., 12 (1984), 141-–153 | DOI | MR
[51] P. Jeganathan, “On asymptotic inference in linear cointegrated time series systems”, Economet. Theory, 13 (1995), 692-–745 | DOI | MR
[52] P. Jeganathan, “Convergence of functionals of sums of r.v.’s to local times of fractional stable motions”, Ann. Probab., 32 (2004), 1771-–1795 | DOI | MR | Zbl
[53] S. Johansen, “Statistical analysis of cointegration vectors”, J. Econ. Dynam. Contr., 12 (1988), 231-–254 | DOI | MR | Zbl
[54] S. Johansen, “Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models”, Econometrica, 59 (1991), 1551-–1580 | DOI | MR | Zbl
[55] I. Karatzas, S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1991 | MR | Zbl
[56] H. Koul, G. Pflug, “Weakly adaptive estimators in explosive autoregression”, Ann. Statist., 18 (1990), 939-–960 | DOI | MR | Zbl
[57] H. Leeb, B. M. Pötscher, “The variance of a integrated process need not diverge to infinity and related results on the partial sums of stationary processes”, Economet. Theory, 17 (2001), 671–-685 | DOI | MR | Zbl
[58] T. Magdalinos, “On the inconsistency of the unrestricted estimator of the information matrix near a unit root”, Economet. J., 10 (2007), 245-–262 | DOI | MR | Zbl
[59] H. B. Mann, A. Wald, “On the statistical treatment of linear stochastic difference equations”, Econometrica, 11 (1943), 173-–200 | DOI | MR
[60] D. Marinucci, P. M. Robinson, “Alternative forms of fractional Brownian motion”, J. Statist. Plann. Inference, 80 (1999), 111-–122 | DOI | MR | Zbl
[61] D. Marinucci, P. M. Robinson, “Weak convergence of multivariate fractional processes”, Stochastic Processes and their Applications, 86 (2000), 103-–120 | DOI | MR | Zbl
[62] D. Marinucci, P. M. Robinson, “Narrow-band analysis of nonstationary processes”, Annals of Statistics, 29 (2001), 947-–986 | DOI | MR | Zbl
[63] P. Marsh, “The available information for invariant tests of a unit root”, Economet. Theory, 23 (2007), 686-–710 | DOI | MR | Zbl
[64] J. R. McCrorie, Representations of the moments of the Dickey–Fuller distribution
[65] D. L. McLeish, “Invariance principles for dependent variables”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 32 (1975), 165-–178 | DOI | MR | Zbl
[66] D. L. McLeish, “On the invariance principle for nonstationary mixingales”, Ann. Probab., 5 (1977), 616-–621 | DOI | MR | Zbl
[67] J. Mijnheer, “Asymptotic inference for $AR(1)$ processes with (nonnormal) stable errors”, J. Mathematical Sciences, 83 (1997), 401-–406 | DOI | MR | Zbl
[68] P. W. Mikulski, M. J. Monsour, “Optimality of the maximum likelihood estimator in first-order autoregressive processes”, J. Time Ser. Anal., 12 (1991), 237-–253 | DOI | MR | Zbl
[69] U. K. Müller, “The impossibility of consistent discrimination between $I(0)$ and $I(1)$ processes”, Economet. Theory, 24 (2008) (to appear) | DOI | MR
[70] T. H. Naylor, T. G. Seaks, D. W. Wichern, “Box–Jenkins models: an alternative to econometric models”, International Statistical Review, 40 (1972), 123-–137 | DOI | Zbl
[71] C. R. Nelson, C. I. Plosser, “Trends and random walks in macroeconomic time series”, Journal of Monetary Economics, 10 (1982), 139-–162 | DOI
[72] E. Paparoditis, D. N. Politis, “Bootstrapping unit root tests for autoregressive time series”, J. Am. Statist. Assoc., 100 (2005), 545-–553 | DOI | MR | Zbl
[73] J. Y. Park, “Bootstrap unit root tests”, Econometrica, 71 (2003), 1845-–1895 | DOI | MR | Zbl
[74] J. Y. Park, P. C. B. Phillips, “Asymptotics for nonlinear transformations of integrated time series”, Economet. Theory, 15 (1999), 269-–298 | MR | Zbl
[75] J. Y. Park, P. C. B. Phillips, “Nonlinear regressions with integrated time series”, Econometrica, 69 (2001), 117-–161 | DOI | MR | Zbl
[76] P. C. B. Phillips, “Understanding spurious regressions in econometrics”, J. Economet., 33 (1986), 322-–340 | DOI | MR
[77] P. C. B. Phillips, “Time series regression with a unit root”, Econometrica, 55 (1987), 277-–301 | DOI | MR | Zbl
[78] P. C. B. Phillips, “Time series regression with a unit root and infinite variance errors”, Economet. Theory, 6 (1990), 44-–62 | DOI | MR
[79] P. C. B. Phillips, “Optimal inference in cointegrated systems”, Econometrica, 59 (1991), 283-–306 | DOI | MR | Zbl
[80] P. C. B. Phillips, “Fully modified least squares and vector autoregression”, Econometrica, 63 (1995), 1023-–1078 | DOI | MR | Zbl
[81] P. C. B. Phillips, “New tools for understanding spurious regressions”, Econometrica, 66 (1998), 1299-–1325 | DOI | MR | Zbl
[82] P. C. B. Phillips, “Descriptive econometrics for non-stationary time series with empirical illustrations”, Journal of Applied Econometrics, 16 (2001), 389-–413 | DOI
[83] P. C. B. Phillips, “Econometric analysis of Fisher’s equation”, Am. J. Econ. Sociology, 64 (2005), 125-–168 | DOI
[84] P. C. B. Phillips, S. N. Durlauf, “Multiple time series regression with integrated processes”, Review of Economic Studies, 53 (1986), 473-–495 | DOI | MR | Zbl
[85] P. C. B. Phillips, Han, “Gaussian inference in $AR(1)$ time series with or without a unit root”, Economet. Theory, 24 (2008) (to appear) | MR
[86] P. C. B. Phillips, M. Loretan, “Estimating long-run economic equilibria”, Review of Economic Studies, 57 (1991), 99-–125 | DOI | MR
[87] P. C. B. Phillips, T. Magdalinos, “Limit theory for moderate deviations from a unit root”, J. Economet., 136 (2007), 115-–130 | DOI | MR | Zbl
[88] P. C. B. Phillips, T. Magdalinos, G. D. A. Phillips, E. Tzavalis (eds.), The Refinement of Econometric Estimation and Test Procedures: Finite Sample and Asymptotic Analysis, University Press, Cambridge, 2007
[89] P. C. B. Phillips, T. Magdalinos, “Limit theory for explosively cointegrated systems”, Economet. Theory, 24 (2008) (to appear) | MR
[90] P. C. B. Phillips, P. Perron, “Testing for a unit root in time series regressions”, Biometrika, 75 (1988), 335-–346 | DOI | MR | Zbl
[91] P. C. B. Phillips, V. Solo, “Asymptotics for linear processes”, Ann. Statist., 20 (1992), 971-–1001 | DOI | MR | Zbl
[92] W. Ploberger, “A complete class of tests when the likelihood is locally asymptotically quadratic”, J. Economet., 118 (2004), 67-–94 | DOI | MR | Zbl
[93] W. Ploberger, “Admissible and nonadmissible tests in unit-root-like situations”, Economet. Theory, 24 (2008) (to appear) | DOI | MR | Zbl
[94] B. M. Pötscher, “Lower risk bounds and properties of confidence sets for ill-posed estimation problems with applications to spectral density and persistence estimation unit roots and estimation of long memory parameters”, Econometrica, 70 (2002), 1035-–1065 | DOI | MR | Zbl
[95] B. M. Pötscher, “Nonlinear functions and convergence to Brownian motion: beyond the continuous mapping theorem”, Economet. Theory, 20 (2004), 1-–22 | DOI | MR | Zbl
[96] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, 1999 | MR | Zbl
[97] P. M. Robinson, “Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regressions”, J. Economet., 47 (1991), 57-–84 | DOI | MR
[98] P. M. Robinson, “Efficient tests of nonstationary hypotheses”, J. Am. Statist. Assoc., 89 (1994), 1420–-1437 | DOI | MR | Zbl
[99] P. M. Robinson, J. Hualde, “Cointegration in fractional systems with unknown integration orders”, Econometica, 71 (2003), 1727-–1766 | DOI | MR | Zbl
[100] P. M. Robinson, Y. Yajima, “Determination of cointegrating rank in fractional systems”, J. Economet., 106 (2002), 217-–241 | DOI | MR | Zbl
[101] P. Saikkonen, “Problems with the asymptotic theory of maximum likelihood estimation in integrated cointegrated systems”, Economet. Theory, 11 (1995), 888-–911 | DOI | MR
[102] P. Saikkonen, “Consistent estimation in cointegrated vector autoregressive models with nonlinear time trends in cointegrating relations”, Economet. Theory, 17 (2001), 296-–326 | DOI | MR | Zbl
[103] P. Saikkonen, “Statistical inference in cointegrated vector autoregressive models with nonlinear time trends in cointegrating relations”, Economet. Theory, 17 (2001), 327-–356 | DOI | MR | Zbl
[104] A. N. Shiryaev, V. G. Spokoiny, “On sequential estimation of an autoregressive parameter”, Stochastics and Stochastic Reports, 60 (1997), 219-–240 | DOI | MR | Zbl
[105] A. V. Skorokhod, “Limit theorems for stochastic processes”, Theory of Probability and its Applications, 1 (1956), 261-–290 | DOI | MR
[106] C. A. Sims, J. H. Stock, M. W. Watson, “Watson inference in linear time series models with some unit roots”, Econometrica, 58 (1990), 113-–144 | DOI | MR | Zbl
[107] J. H. Stock J.H., Handbook of Econometrics, v. 4, Elsevier, 1994
[108] J. H. Stock, M. W. Watson, “Testing for common trends”, J. Am. Statist. Assoc., 83 (1988), 1097–-1107 | DOI | MR | Zbl
[109] K. Tanaka, “The nonstationary fractional unit root”, Econometric Theory, 15 (1999), 549-–582 | DOI | MR | Zbl
[110] Q. Wang, P. C. B. Phillips, Asymptotic theory for local time density estimation and nonparametric cointegrating regression, Discussion Paper No. 1594, Cowles Foundation, 2006
[111] M. W. Watson, R. F. Engle, D. L. McFadden (eds.), Handbook of Econometrics, v. 4, Elsevier, 1994
[112] J. S. White, “The limiting distribution of the serial correlation coefficient in the explosive case”, Annals of Mathematical Statistics, 29 (1958), 1188-–1197 | DOI | MR | Zbl
[113] J. M. Wooldridge, H. White, “Some invariance principles and central limit theorems for dependent heterogeneous processes”, Economet. Theory, 4 (1988), 210-–230 | DOI | MR