A limit theorem for symmetric Markovian random evolution in
Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 69-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{THSP_2008_14_1_a7,
     author = {Alexander D. Kolesnik},
     title = {A limit theorem for symmetric {Markovian} random evolution in},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {69--75},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a7/}
}
TY  - JOUR
AU  - Alexander D. Kolesnik
TI  - A limit theorem for symmetric Markovian random evolution in
JO  - Teoriâ slučajnyh processov
PY  - 2008
SP  - 69
EP  - 75
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a7/
LA  - en
ID  - THSP_2008_14_1_a7
ER  - 
%0 Journal Article
%A Alexander D. Kolesnik
%T A limit theorem for symmetric Markovian random evolution in
%J Teoriâ slučajnyh processov
%D 2008
%P 69-75
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a7/
%G en
%F THSP_2008_14_1_a7
Alexander D. Kolesnik. A limit theorem for symmetric Markovian random evolution in. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 69-75. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a7/

[1] H. Bateman, A. Erdelyi, Tables of Integral Transforms, McGraw-Hill, New York, 1954 | MR

[2] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York, 1980 | MR

[3] A. D. Kolesnik, “Random motions at finite speed in higher dimensions”, 2008 (to appear) | MR

[4] A. D. Kolesnik, “Characteristic functions of Markovian random evolutions in ${\mathbb R}^m$”, Bull. Acad. Sci. Moldova, Ser. Math., 3(52) (2006), 117–120 | MR | Zbl

[5] A. D. Kolesnik, “A four-dimensional random motion at finite speed”, J. Appl. Prob., 43 (2006), 1107–1118 | DOI | MR | Zbl

[6] A. D. Kolesnik, Integral transforms of the distributions for Markovian random evolutions in ${\mathbb R}^m$, No. 10, 29 p., Inst. Math. Acad. Sci. Moldova Publ., 2006 | MR

[7] A. D. Kolesnik, E. Orsingher, “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Prob., 42 (2005), 1168–1182 | DOI | MR | Zbl

[8] A. D. Kolesnik, A. F. Turbin, “The equation of symmetric Markovian random evolution in a plane”, Stoch. Process. Appl., 75 (1998), 67–87 | DOI | MR | Zbl

[9] J. Masoliver, J. M. Porrá, G. H. Weiss, “Some two and three-dimensional persistent random walks”, Physica A, 193 (1993), 469–482 | DOI

[10] G. Papanicolaou, “Asymptotic analysis of transport processes”, Bull. Amer. Math. Soc., 81 (1975), 330–392 | DOI | MR | Zbl

[11] M. Pinsky, “Isotropic transport process on a Riemannian manifold”, Trans. Amer. Math. Soc., 218 (1976), 353–360 | DOI | MR | Zbl

[12] M. Pinsky, Lectures on Random Evolution, World Scientific, River Edge, NJ, 1991 | MR | Zbl

[13] W. Stadje, “The exact probability distribution of a two-dimensional random walk”, J. Stat. Phys., 46 (1987), 207–216 | DOI | MR

[14] W. Stadje, “Exact probability distributions for non-correlated random walk models”, J. Stat. Phys., 56 (1989), 415–435 | DOI | MR | Zbl

[15] V. S. Vladimirov, The Equations of Mathematical Physics, Nauka, Moscow, 1981 | MR