Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_1_a7, author = {Alexander D. Kolesnik}, title = {A limit theorem for symmetric {Markovian} random evolution in}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {69--75}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a7/} }
Alexander D. Kolesnik. A limit theorem for symmetric Markovian random evolution in. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 69-75. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a7/
[1] H. Bateman, A. Erdelyi, Tables of Integral Transforms, McGraw-Hill, New York, 1954 | MR
[2] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York, 1980 | MR
[3] A. D. Kolesnik, “Random motions at finite speed in higher dimensions”, 2008 (to appear) | MR
[4] A. D. Kolesnik, “Characteristic functions of Markovian random evolutions in ${\mathbb R}^m$”, Bull. Acad. Sci. Moldova, Ser. Math., 3(52) (2006), 117–120 | MR | Zbl
[5] A. D. Kolesnik, “A four-dimensional random motion at finite speed”, J. Appl. Prob., 43 (2006), 1107–1118 | DOI | MR | Zbl
[6] A. D. Kolesnik, Integral transforms of the distributions for Markovian random evolutions in ${\mathbb R}^m$, No. 10, 29 p., Inst. Math. Acad. Sci. Moldova Publ., 2006 | MR
[7] A. D. Kolesnik, E. Orsingher, “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Prob., 42 (2005), 1168–1182 | DOI | MR | Zbl
[8] A. D. Kolesnik, A. F. Turbin, “The equation of symmetric Markovian random evolution in a plane”, Stoch. Process. Appl., 75 (1998), 67–87 | DOI | MR | Zbl
[9] J. Masoliver, J. M. Porrá, G. H. Weiss, “Some two and three-dimensional persistent random walks”, Physica A, 193 (1993), 469–482 | DOI
[10] G. Papanicolaou, “Asymptotic analysis of transport processes”, Bull. Amer. Math. Soc., 81 (1975), 330–392 | DOI | MR | Zbl
[11] M. Pinsky, “Isotropic transport process on a Riemannian manifold”, Trans. Amer. Math. Soc., 218 (1976), 353–360 | DOI | MR | Zbl
[12] M. Pinsky, Lectures on Random Evolution, World Scientific, River Edge, NJ, 1991 | MR | Zbl
[13] W. Stadje, “The exact probability distribution of a two-dimensional random walk”, J. Stat. Phys., 46 (1987), 207–216 | DOI | MR
[14] W. Stadje, “Exact probability distributions for non-correlated random walk models”, J. Stat. Phys., 56 (1989), 415–435 | DOI | MR | Zbl
[15] V. S. Vladimirov, The Equations of Mathematical Physics, Nauka, Moscow, 1981 | MR