Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_1_a3, author = {Rita Giuliano}, title = {The rosenblatt coefficient of}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {30--38}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a3/} }
Rita Giuliano. The rosenblatt coefficient of. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 30-38. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a3/
[1] J. R. Blum, D. L. Hanson, J. I. Rosenblatt, “On the Central Limit Theorem for the Sum of a Random Number of Independent Random Variables”, Z. Wahrscheinlichkeitstheorie verw. Geb., 1:4 (1963), 389–393 | DOI | MR | Zbl
[2] G. A. Brosamler, “An almost everywhere central limit theorem”, Math. Proc. Cambridge Philos. Soc., 104:3 (1988), 561-–574 | DOI | MR | Zbl
[3] R. Durrett, Probability: Theory and Examples, Thomson, 2005 | MR | Zbl
[4] R. Giuliano Antonini, “On the Rosenblatt coefficient for normalized sums of real random variables”, Rend. Acc. Naz. Mem. Mat. Appl., 5:24 (2000), 111-–120 | MR
[5] M. Lacey, W. Philipp, “A note on the almost sure central limit theorem”, Statist. Probab. Letters, 9 (1990), 201–205 | DOI | MR | Zbl
[6] V. V. Petrov, “On the central limit theorem for $m$–dependent quantities”, Proc. All-Union Conf. Theory Prob. and Math. Statist. (Erevan, 1958), 1960, 38-–44 | MR | Zbl
[7] V. V. Petrov, Limit Theorems of Probability Theory, Oxford Science Publications, 1995 | MR | Zbl
[8] W. Philipp, W. Stout, “Almost sure Invariance principles for partial sums of weakly dependent random variables”, Math. Proc. Cambridge Philos. Soc., 161:2 (1975), iv+140 pp. | MR
[9] P. Schatte,, “On strong versions of the almost sure central limit theorem”, Math.Nachr., 137 (1988), 249–256 | DOI | MR | Zbl