Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_1_a11, author = {Sergey V. Nagaev}, title = {Asymptotic formulas for probabilities of}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {100--116}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a11/} }
Sergey V. Nagaev. Asymptotic formulas for probabilities of. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 100-116. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a11/
[1] W. Feller, An Introduction to Probability Theory and Its Applications, v. II, Wiley, New York, 1967 | MR
[2] S. V. Nagaev, S. S. Khodzhabagjan, “On an estimate of the concentration function of sums of independent random variables”, Theory Probab. Appl., 41:3 (1996), 560–568 | MR
[3] P. Greenwood, I. Omey, J. L. Teugels, “Harmonic renewal measures”, Z.Warsch. Verw. Gebiete, 59 (1982), 391–409 | DOI | MR | Zbl
[4] P. Greenwood, I. Omey, J. L. Teugels, “Harmonic renewal measures and bivariate domains of attractions in fluctuation theory”, Z. Warsch. Verw. Gebiete, 61 (1982), 527–539 | DOI | MR | Zbl
[5] R. J. Grubel, “On harmonic renewal measures”, Probab. Theory Rel. Fields, 71 (1986), 393–403 | DOI | MR
[6] R. J. Grubel, “Harmonic renewal sequences and the first positive sum”, J. London Math. Soc., 38:2 (1988), 179–192 | DOI | MR | Zbl
[7] A. J. Stam, “Some theorems on harmonic renewal measures”, Stochastic processes and their Appl., 39 (1991), 277–285 | DOI | MR | Zbl
[8] L. de Haan, “An Abel–Tauber theorem for Laplace transforms”, J. London Math. Soc., 13:3 (1976), 537–542 | DOI | MR | Zbl
[9] R. A. Doney, “Moments of ladder heights in random walks”, J. Appl. Probab., 17 (1980), 248–252 | DOI | MR | Zbl
[10] B. A. Rogosin, “On the distribution of the first jump”, Theory Probab. Appl., 9 (1964), 450–465 | DOI | MR
[11] N. Veraverbeke, “Asymptotic behaviour of Wiener-Hopf factors of a random walk”, Stochastic processes and their Appl., 5 (1977), 27–37 | DOI | MR | Zbl
[12] P. Embrechts, C. M. Goldie, N. Vereverbeke, “Subexponentiality and infinite divisibility”, Z. Warsch. Verw. Gebiete, 49 (1979), 335–347 | DOI | MR | Zbl
[13] R. Grubel, “Tail behaviour of ladder–height distibulions in random walks”, J. Appl. Probab., 22 (1985), 705–709 | DOI | MR | Zbl
[14] S. V. Nagaev, Exact expressions for moments of ladder heigsts, Preprint 2007/192., IM SO RAN, Novosibirsk, 2007 (In Russian) | MR
[15] S. V. Nagaev, “The formula for the Laplace transform of the projection of a distribution on the positive semiaxis and some its applications”, Dokl. Math., 416:5 (2007) | MR
[16] B. Rosen, “On the asymptotic distribution of sums of independent indentically distributed random variables”, Ark.Mat., 4:4 (1962), 323–332 | DOI | MR | Zbl
[17] I. S. Gradshtein, I. M. Ryzhik, Tables of integrals, sums, series and products, Fiz. Mat. Giz., Moscow, 1963 | MR