@article{THSP_2008_14_1_a0,
author = {Roman I. Andrushkiw and Dmitry A. Klyushin and Yuriy I. Petunin},
title = {A new test for unimodality},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {1--6},
year = {2008},
volume = {14},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a0/}
}
Roman I. Andrushkiw; Dmitry A. Klyushin; Yuriy I. Petunin. A new test for unimodality. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 1-6. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a0/
[1] B. W. Silverman, “Using kernel density estimates to investigate multimodality”, J.of the Royal Statistical Society, B, 43, no. 1, 1981, 97–99 | MR
[2] J. A. Hartigan, “Computation of the dip statistics to test for unimodality”, Applied Statistics, 34 (1985), 320–325 | DOI
[3] J. A. Hartigan, “The span test of multimodality”, Classification and Related Methods of Data Analysis, ed. H. H. Bock, North-Holland, Amsterdam, 1988, 229–236 | MR
[4] J. A. Hartigan, S. Mohanty, “The RUNT test for multimodality”, Applied Statistics, 9 (1992), 63–70 | MR
[5] A. N. Kolmogoroff, “Determinatione empirica di una legge di distributione”, Giornale Instit. Ital. Attuari, 4 (1933), 83–91
[6] N. V. Smirnov, “Sur les ecarts de la courbe de distribution empiric”, Mat.Sb., 6 (1939), 3–26 | MR | Zbl
[7] A. Wald, J. Wolfowitz, “Confidence limits for continuous distribution functions”, Ann. Math. Statist., 10 (1939), 199–326 | MR
[8] W. Feller, “On the Kolmogorov–Smirnov limit theorems for empirical distributions”, Ann. Math. Statist., 19 (1948), 177–189 | DOI | MR | Zbl
[9] F. J. Massey, “A note on the estimation of a distribution function by confidence limits”, Ann. Math. Statist., 21 (1950), 125–128 | MR
[10] Z. W. Birnbaum, F. H. Tingey, “One-sided confidence contours for distribution functions”, Ann. Math. Statist., 22 (1951), 592–596 | DOI | MR | Zbl
[11] B. L. Van der Waerden, Mathematische Statistik, Springer, Berlin, 1957 | MR | Zbl
[12] D. F. Vysochanskij, Yu. I. Petunin, “Justification of the 3-$\sigma$ rule for unimodal distribution”, Theor. Probability Math. Stat., 21 (1980), 25–36 | MR | Zbl