A new test for unimodality
Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 1-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

A distribution function (d.f.) of a random variable is unimodal if there exists a number such that d.f. is convex left from this number and is concave right from this number. This number is called a mode of d.f. Since one may have more than one mode, a mode is not necessarily unique. The purpose of this paper is to construct nonparametric tests for the unimodality of d.f. based on a sample obtained from the general population of values of the random variable by simple sampling. The tests proposed are significance tests such that the unimodality of d.f. can be guaranteed with some probability (confidence level).
Keywords: Unimodality, distribution function, significance test.
@article{THSP_2008_14_1_a0,
     author = {Roman I. Andrushkiw and Dmitry A. Klyushin and Yuriy I. Petunin},
     title = {A new test for unimodality},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a0/}
}
TY  - JOUR
AU  - Roman I. Andrushkiw
AU  - Dmitry A. Klyushin
AU  - Yuriy I. Petunin
TI  - A new test for unimodality
JO  - Teoriâ slučajnyh processov
PY  - 2008
SP  - 1
EP  - 6
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a0/
LA  - en
ID  - THSP_2008_14_1_a0
ER  - 
%0 Journal Article
%A Roman I. Andrushkiw
%A Dmitry A. Klyushin
%A Yuriy I. Petunin
%T A new test for unimodality
%J Teoriâ slučajnyh processov
%D 2008
%P 1-6
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a0/
%G en
%F THSP_2008_14_1_a0
Roman I. Andrushkiw; Dmitry A. Klyushin; Yuriy I. Petunin. A new test for unimodality. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 1-6. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a0/

[1] B. W. Silverman, “Using kernel density estimates to investigate multimodality”, J.of the Royal Statistical Society, B, 43, no. 1, 1981, 97–99 | MR

[2] J. A. Hartigan, “Computation of the dip statistics to test for unimodality”, Applied Statistics, 34 (1985), 320–325 | DOI

[3] J. A. Hartigan, “The span test of multimodality”, Classification and Related Methods of Data Analysis, ed. H. H. Bock, North-Holland, Amsterdam, 1988, 229–236 | MR

[4] J. A. Hartigan, S. Mohanty, “The RUNT test for multimodality”, Applied Statistics, 9 (1992), 63–70 | MR

[5] A. N. Kolmogoroff, “Determinatione empirica di una legge di distributione”, Giornale Instit. Ital. Attuari, 4 (1933), 83–91

[6] N. V. Smirnov, “Sur les ecarts de la courbe de distribution empiric”, Mat.Sb., 6 (1939), 3–26 | MR | Zbl

[7] A. Wald, J. Wolfowitz, “Confidence limits for continuous distribution functions”, Ann. Math. Statist., 10 (1939), 199–326 | MR

[8] W. Feller, “On the Kolmogorov–Smirnov limit theorems for empirical distributions”, Ann. Math. Statist., 19 (1948), 177–189 | DOI | MR | Zbl

[9] F. J. Massey, “A note on the estimation of a distribution function by confidence limits”, Ann. Math. Statist., 21 (1950), 125–128 | MR

[10] Z. W. Birnbaum, F. H. Tingey, “One-sided confidence contours for distribution functions”, Ann. Math. Statist., 22 (1951), 592–596 | DOI | MR | Zbl

[11] B. L. Van der Waerden, Mathematische Statistik, Springer, Berlin, 1957 | MR | Zbl

[12] D. F. Vysochanskij, Yu. I. Petunin, “Justification of the 3-$\sigma$ rule for unimodal distribution”, Theor. Probability Math. Stat., 21 (1980), 25–36 | MR | Zbl