Simulation of random processes with known correlation function with the help of Karhunen-Loeve decomposition
Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 163-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is proved that allows to use approximations for construction of the Karhunen-Loeve model of stochastic process with known correlation function.
Keywords: Stochastic process, Karhunen-Loeve model, homogeneous Fredholm equations of the second order, approximations.
@article{THSP_2007_13_4_a9,
     author = {Oleksandr Moklyachuk},
     title = {Simulation of random processes with known correlation function with the help of {Karhunen-Loeve} decomposition},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a9/}
}
TY  - JOUR
AU  - Oleksandr Moklyachuk
TI  - Simulation of random processes with known correlation function with the help of Karhunen-Loeve decomposition
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 163
EP  - 169
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a9/
LA  - en
ID  - THSP_2007_13_4_a9
ER  - 
%0 Journal Article
%A Oleksandr Moklyachuk
%T Simulation of random processes with known correlation function with the help of Karhunen-Loeve decomposition
%J Teoriâ slučajnyh processov
%D 2007
%P 163-169
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a9/
%G en
%F THSP_2007_13_4_a9
Oleksandr Moklyachuk. Simulation of random processes with known correlation function with the help of Karhunen-Loeve decomposition. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 163-169. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a9/

[1] Yu. V. Kozachenko, A. O. Pashko, Modeling of shochastic processes, Kyiv university, Kyiv, 1999

[2] A. F. Ferlan, V. S. Sizikov, Integral equations: methods, algorythms, programs, Naukova dumka, Kyiv, 1986

[3] Rita Giuliano Antonini, Yuriy V. Kozachenko, Antonina M. Tegza, “Accuracy of simulation in $L_p$ of Gaussian random processes”, Visnik of Kyiv university, 5 (2002), 7–14