Simulation of random processes with known correlation function with the help of Karhunen-Loeve decomposition
Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 163-169
Cet article a éte moissonné depuis la source Math-Net.Ru
A theorem is proved that allows to use approximations for construction of the Karhunen-Loeve model of stochastic process with known correlation function.
Keywords:
Stochastic process, Karhunen-Loeve model, homogeneous Fredholm equations of the second order, approximations.
@article{THSP_2007_13_4_a9,
author = {Oleksandr Moklyachuk},
title = {Simulation of random processes with known correlation function with the help of {Karhunen-Loeve} decomposition},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {163--169},
year = {2007},
volume = {13},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a9/}
}
TY - JOUR AU - Oleksandr Moklyachuk TI - Simulation of random processes with known correlation function with the help of Karhunen-Loeve decomposition JO - Teoriâ slučajnyh processov PY - 2007 SP - 163 EP - 169 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a9/ LA - en ID - THSP_2007_13_4_a9 ER -
Oleksandr Moklyachuk. Simulation of random processes with known correlation function with the help of Karhunen-Loeve decomposition. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 163-169. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a9/
[1] Yu. V. Kozachenko, A. O. Pashko, Modeling of shochastic processes, Kyiv university, Kyiv, 1999
[2] A. F. Ferlan, V. S. Sizikov, Integral equations: methods, algorythms, programs, Naukova dumka, Kyiv, 1986
[3] Rita Giuliano Antonini, Yuriy V. Kozachenko, Antonina M. Tegza, “Accuracy of simulation in $L_p$ of Gaussian random processes”, Visnik of Kyiv university, 5 (2002), 7–14