Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_4_a6, author = {Robin Lundgren}, title = {Structure of optimal stopping}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {98--129}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a6/} }
Robin Lundgren. Structure of optimal stopping. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 98-129. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a6/
[1] P. Baldi, L. Caramellino, M. G. Ivono, “Pricing general barrier options: A numerical approach using sharp large deviations”, Mathematical Finance, 9 (1999), 293–322
[2] P. P. Boyle, M. Broadie, P. Glasserman, “Monte carlo methods for security pricing”, Journal of Economic Dynamics and Control, 21 (1997), 1267–1321
[3] P. P. Boyle, S. H. Lau, “Bumping up against the barrier with the binomial method”, Journal of Derivatives, 1 (1994), 6–14
[4] P. P. Boyle, “Options: A Monte carlo approach”, Journal of Financial Economics, 4 (1977), 323–338
[5] M. Broadie, P. Glasserman, S. Kou, “A continuity correction for discrete barrier options”, Mathematical Finance, 7 (1997), 325–348
[6] Y. S. Chow, H. Robbins, D. Siegmund, The theory of optimal stopping, Houghton Mifflin Comp., 1971
[7] P. Glasserman, Monte carlo methods in financial engineering, Springer-Verlag, 2004
[8] S. D. Jacka, “Optimal stopping and the American put”, Mathematical Finance, 1 (1991), 1–14
[9] H. Jönsson, A. G. Kukush, D. S. Silvestrov, “Threshold structure of optimal stopping domains for American type options”, Theory of Stochastic Processes, 8(24) (2002), 169–176
[10] H. Jönsson, A. G. Kukush, D. S. Silvestrov, “Threshold structure of optimal stopping strategies for American type options I”, Teor. \u{I}movirnost. ta Matem. Statyst., 71 (2004), 82–92
[11] H. Jönsson, A. G. Kukush, D. S. Silvestrov, “Threshold structure of optimal stopping strategies for American type options II”, Teor. \u{I}movirnost. ta Matem. Statyst., 72 (2005), 42–53
[12] H. Jönsson, Optimal stopping domains and reward functions for discrete time American type options, PhD Thesis, M\:{a}lardalen University, 2005
[13] A. G. Kukush, D. S. Silvestrov, “Optimal strategies for American type options with discrete and continuous time”, Theory of Stochastic Processes, 5(21) (1999), 71–79
[14] A. G. Kukush, D. S. Silvestrov, “Optimal pricing for American type options with discrete time”, Theory of Stochastic Processes, 10(26) (2004), 72–96
[15] C. F. Lo, H. C. Lee, C. H. Hui, “A simple approacha for pricing barrier options with time dependent parameters”, Quantitative Finance, 3 (2003), 98–107
[16] F. A. Longstaff, E. S. Schwartz, “Valuing American options by simulation: A simple least squares approach”, Review of Financial Studies, 14 (2001), 113–147
[17] R. Lundgren, “Monte carlo studies of optimal stopping domains for American knock out options”, Proceedings of ASMDA conference, Chania, Greece, 2007, 8 pages
[18] G. Peskir, A. N. Shiryaev, Optimal stopping and free boundary value problems, Birkhauser, 2006
[19] P. Salminen, “Optimal stopping and American put options”, Theory of Stochastic Processes, 5(21) (1999), 129–144
[20] A. N. Shiryaev, Optimal stopping rules, Springer-Verlag, 1978
[21] J. L. Snell, “Applications of martingale system theorems”, Transactions of the American Mathematical Society, 2 (1952), 293–312
[22] P. Van Moerbecke, “On optimal stopping and free boundary problems”, Archive for Rational Mechanics and Analysis, 60 (1976), 101–148