Structure of optimal stopping
Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 98-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

American options give us the possibility to exercise them at any moment of time up to maturity. An optimal stopping domain for American type options is a domain that, if the underlying price process enters we should exercise the option. A knock out option is a American barrier option of knock out type, but with more general shape structure of the knock out domain. An algorithm for generating the optimal stopping domain for American type knock out options is constructed. Monte Carlo simulation is used to determine the structure of the optimal stopping domain. Results of the structural, and stability of studies are presented for different models of payoff functions and knock out domains.
Keywords: Markov process, optimal stopping, discrete time, American option, knock out option
Mots-clés : barrier option, Monte Carlo simulation.
@article{THSP_2007_13_4_a6,
     author = {Robin Lundgren},
     title = {Structure of optimal stopping},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {98--129},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a6/}
}
TY  - JOUR
AU  - Robin Lundgren
TI  - Structure of optimal stopping
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 98
EP  - 129
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a6/
LA  - en
ID  - THSP_2007_13_4_a6
ER  - 
%0 Journal Article
%A Robin Lundgren
%T Structure of optimal stopping
%J Teoriâ slučajnyh processov
%D 2007
%P 98-129
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a6/
%G en
%F THSP_2007_13_4_a6
Robin Lundgren. Structure of optimal stopping. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 98-129. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a6/

[1] P. Baldi, L. Caramellino, M. G. Ivono, “Pricing general barrier options: A numerical approach using sharp large deviations”, Mathematical Finance, 9 (1999), 293–322

[2] P. P. Boyle, M. Broadie, P. Glasserman, “Monte carlo methods for security pricing”, Journal of Economic Dynamics and Control, 21 (1997), 1267–1321

[3] P. P. Boyle, S. H. Lau, “Bumping up against the barrier with the binomial method”, Journal of Derivatives, 1 (1994), 6–14

[4] P. P. Boyle, “Options: A Monte carlo approach”, Journal of Financial Economics, 4 (1977), 323–338

[5] M. Broadie, P. Glasserman, S. Kou, “A continuity correction for discrete barrier options”, Mathematical Finance, 7 (1997), 325–348

[6] Y. S. Chow, H. Robbins, D. Siegmund, The theory of optimal stopping, Houghton Mifflin Comp., 1971

[7] P. Glasserman, Monte carlo methods in financial engineering, Springer-Verlag, 2004

[8] S. D. Jacka, “Optimal stopping and the American put”, Mathematical Finance, 1 (1991), 1–14

[9] H. Jönsson, A. G. Kukush, D. S. Silvestrov, “Threshold structure of optimal stopping domains for American type options”, Theory of Stochastic Processes, 8(24) (2002), 169–176

[10] H. Jönsson, A. G. Kukush, D. S. Silvestrov, “Threshold structure of optimal stopping strategies for American type options I”, Teor. \u{I}movirnost. ta Matem. Statyst., 71 (2004), 82–92

[11] H. Jönsson, A. G. Kukush, D. S. Silvestrov, “Threshold structure of optimal stopping strategies for American type options II”, Teor. \u{I}movirnost. ta Matem. Statyst., 72 (2005), 42–53

[12] H. Jönsson, Optimal stopping domains and reward functions for discrete time American type options, PhD Thesis, M\:{a}lardalen University, 2005

[13] A. G. Kukush, D. S. Silvestrov, “Optimal strategies for American type options with discrete and continuous time”, Theory of Stochastic Processes, 5(21) (1999), 71–79

[14] A. G. Kukush, D. S. Silvestrov, “Optimal pricing for American type options with discrete time”, Theory of Stochastic Processes, 10(26) (2004), 72–96

[15] C. F. Lo, H. C. Lee, C. H. Hui, “A simple approacha for pricing barrier options with time dependent parameters”, Quantitative Finance, 3 (2003), 98–107

[16] F. A. Longstaff, E. S. Schwartz, “Valuing American options by simulation: A simple least squares approach”, Review of Financial Studies, 14 (2001), 113–147

[17] R. Lundgren, “Monte carlo studies of optimal stopping domains for American knock out options”, Proceedings of ASMDA conference, Chania, Greece, 2007, 8 pages

[18] G. Peskir, A. N. Shiryaev, Optimal stopping and free boundary value problems, Birkhauser, 2006

[19] P. Salminen, “Optimal stopping and American put options”, Theory of Stochastic Processes, 5(21) (1999), 129–144

[20] A. N. Shiryaev, Optimal stopping rules, Springer-Verlag, 1978

[21] J. L. Snell, “Applications of martingale system theorems”, Transactions of the American Mathematical Society, 2 (1952), 293–312

[22] P. Van Moerbecke, “On optimal stopping and free boundary problems”, Archive for Rational Mechanics and Analysis, 60 (1976), 101–148