Comparing the efficiency of estimates in concrete errors-in-variables models under unknown nuisance parameters
Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 69-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a regression of y on x given by a pair of mean and variance functions with a parameter vector $\theta$ to be estimated that also appears in the distribution of the regressor variable $x.$ The estimation of $\theta$ is based on an extended quasi score $(QS)$ function. Of special interest is the case where the distribution of $x$ depends only on a subvector $\alpha$ of $\theta,$ which may be considered a nuisance parameter. A major application of this model is the classical measurement error model, where the corrected score $(CS)$ estimator is an alternative to the $QS$ estimator. Under unknown nuisance parameters we derive conditions under which the $QS$ estimator is strictly more efficient than the $CS$ estimator. We focus on the loglinear Poisson, the Gamma, and the logit model.
Keywords: Mean-variance model, measurement error model, quasi score estimator, corrected score estimator, nuisance parameter, optimality property.
@article{THSP_2007_13_4_a4,
     author = {Alexander Kukush and Andrii Malenko and Hans Schneeweiss},
     title = {Comparing the efficiency of estimates in concrete errors-in-variables models under unknown nuisance parameters},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {69--81},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a4/}
}
TY  - JOUR
AU  - Alexander Kukush
AU  - Andrii Malenko
AU  - Hans Schneeweiss
TI  - Comparing the efficiency of estimates in concrete errors-in-variables models under unknown nuisance parameters
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 69
EP  - 81
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a4/
LA  - en
ID  - THSP_2007_13_4_a4
ER  - 
%0 Journal Article
%A Alexander Kukush
%A Andrii Malenko
%A Hans Schneeweiss
%T Comparing the efficiency of estimates in concrete errors-in-variables models under unknown nuisance parameters
%J Teoriâ slučajnyh processov
%D 2007
%P 69-81
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a4/
%G en
%F THSP_2007_13_4_a4
Alexander Kukush; Andrii Malenko; Hans Schneeweiss. Comparing the efficiency of estimates in concrete errors-in-variables models under unknown nuisance parameters. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 69-81. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a4/

[1] R. J. Carroll, D. Ruppert, L. A. Stefanski, Measurement Error in Nonlinear Models, Chapman and Hall, London, 1995

[2] C. C. Heyde, Quasi-Likelihood And Its Application, Springer, New York, 1997

[3] A. Kukush, H. Schneeweiss, “Comparing different estimators in a nonlinear measurement error model. I”, Mathematical Methods of Statistics, 14 (2005), 53–79

[4] A. Kukush, H. Schneeweiss, S. Shklyar, Quasi Score is more efficient than Corrected Score in a general nonlinear measurement error model, Discussion Paper 451, SFB 386, Universität München, 2005

[5] A. Kukush, H. Schneeweiss, Asymptotic optimality of the quasi-score estimator in a class of linear score estimators, Discussion Paper 477, SFB 386, Universität München, 2006

[6] A. Kukush, A. Malenko, H. Schneeweiss, Optimality of the quasi-score estimator in a mean-variance model with applications to measurement error models, Discussion Paper 494, SFB 386, Universität München, 2006

[7] H. Schneeweiss, A. Kukush, “Comparing the efficiency of structural and functional methods in measurement error models. Submitted (a).” (to appear)

[8] M. J. Schervish, Theory of Statistics, Springer, New York, 1995

[9] S. Shklyar, H. Schneeweiss, “A comparison of asymptotic covariance matrices of three consistent estimators in the Poisson regression model with measurement errors”, Journal Multivariate Analysis, 94:2 (2005), 250–270

[10] S. Shklyar, H. Schneeweiss, A. Kukush, “Quasi Score is more efficient than Corrected Score in a polynomial measurement error model”, Metrika, 65 (2007), 275–295

[11] L. Stefanski, “Unbiased estimation of a nonlinear function of a normal mean with application to measurement error models”, Communications in Statistics, Part A - Theory and Methods, 18 (1989), 4335–4358