Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_4_a2, author = {Myroslav Drozdenko}, title = {Weak convergence of first-rare-event times for {semi-Markov} processes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {29--63}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a2/} }
Myroslav Drozdenko. Weak convergence of first-rare-event times for semi-Markov processes. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 29-63. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a2/
[1] V. V. Anisimov, “Asymptotic analysis of stochastic block replacement policies for multicomponent systems in a Markov environment”, Oper. Res. Lett., 33:1 (2005), 26–34
[2] K. E. Avrachenkov, M. Haviv, “Perturbation of null spaces with application to the eigenvalue problem and generalized inverses”, Linear Algebra Appl., 369 (2003), 1–25
[3] T. Dayar, N. Akar, “Computing moments of first passage times to a subset of states in Markov chains”, SIAM J. Matrix Anal. Appl., 27:2 (2005), 396–412
[4] A. Di Crescenzo, A. Nastro, “On first-passage-time densities for certain symmetric Markov chains”, Sci. Math. Jpn., 60:2 (2004), 381–390
[5] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley Series in Probability and Statistics, v. II, Wiley, New York, 1966, 1971
[6] C.-D. Fuh, “Uniform Markov renewal theory and ruin probabilities in Markov random walks”, Ann. Appl. Probab., 14 issue 3 (2004), 1202–1241
[7] P. G. Harrison, W. J. Knottenbelt, “Passage time distribution in large Markov chains”, Performance Evaluation Review, 2002, no. 30, 77–85
[8] J.J̇. Hunter, “Stationary distributions and mean first passage times of perturbed Markov chains”, Linear Algebra Appl., 410 (2005), 217–243
[9] J. Janssen, R. Manca, Applied semi-Markov processes, Springer, New York, 2006
[10] V. S. Koroliuk, N. Limnios, Stochastic systems in merging phase space, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005
[11] N. Limnios, B. Ouhbi,A. Sadek, “Empirical estimator of stationary distribution for semi-Markov processes”, Comm. Statist. Theory Methods, 34:4 (2005), 987–995
[12] M. Loève, Probability Theory, Van Nostrand, Toronto and Princeton, 1955, 1963
[13] V. H. Nguyen, Q. H. Vuong, M. N. Tran, “Central limit theorem for functional of jump Markov processes”, Vietnam J. Math., 33:4 (2005), 443–461
[14] D. S. Silvestrov, Limit Theorems for Randomly Stopped Stochastic Processes, Springer, London, 2004
[15] D. S. Silvestrov, M. O. Drozdenko, “Necessary and sufficient conditions for weak convergence of the first-rare-event times for semi-Markov processes,”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2005, no. 11, 25–28 (in Ukrainian)
[16] D. S. Silvestrov, M. O. Drozdenko, “Necessary and sufficient conditions for weak convergence of first-rare-event times for semi-Markov processes, I, II”, Theory of Stochastic Processes, 12 (28):3–4 (2006a, 2006b), 151–186, 187–202
[17] E. Solan, N. Vielle, “Perturbed Markov chains”, J. App. Probab., 40 (2003), 107–122
[18] M. A. Symeonaki, G. B. Stamou, “Rate of convergence, asymptotically attainable structures and sensitivity in non-homogeneous Markov systems with fuzzy states”, Fuzzy Sets and Systems, 157:1 (2006), 143–159
[19] Z. S. Szewczak, “A remark on a large deviation theorem for Markov chain with a finite number of states”, Teor. Veroyatn. Primen., 50:3 (2005), 612–622