Weak convergence of first-rare-event times for semi-Markov processes
Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 29-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for weak convergence of first-rare-event times for semi-Markov processes with finite set of states in series of schemes are obtained.
Keywords: Weak convergence, semi-Markov processes, first-rare-event times, limit theorems, necessary and sufficient conditions.
@article{THSP_2007_13_4_a2,
     author = {Myroslav Drozdenko},
     title = {Weak convergence of first-rare-event times for {semi-Markov} processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {29--63},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a2/}
}
TY  - JOUR
AU  - Myroslav Drozdenko
TI  - Weak convergence of first-rare-event times for semi-Markov processes
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 29
EP  - 63
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a2/
LA  - en
ID  - THSP_2007_13_4_a2
ER  - 
%0 Journal Article
%A Myroslav Drozdenko
%T Weak convergence of first-rare-event times for semi-Markov processes
%J Teoriâ slučajnyh processov
%D 2007
%P 29-63
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a2/
%G en
%F THSP_2007_13_4_a2
Myroslav Drozdenko. Weak convergence of first-rare-event times for semi-Markov processes. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 29-63. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a2/

[1] V. V. Anisimov, “Asymptotic analysis of stochastic block replacement policies for multicomponent systems in a Markov environment”, Oper. Res. Lett., 33:1 (2005), 26–34

[2] K. E. Avrachenkov, M. Haviv, “Perturbation of null spaces with application to the eigenvalue problem and generalized inverses”, Linear Algebra Appl., 369 (2003), 1–25

[3] T. Dayar, N. Akar, “Computing moments of first passage times to a subset of states in Markov chains”, SIAM J. Matrix Anal. Appl., 27:2 (2005), 396–412

[4] A. Di Crescenzo, A. Nastro, “On first-passage-time densities for certain symmetric Markov chains”, Sci. Math. Jpn., 60:2 (2004), 381–390

[5] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley Series in Probability and Statistics, v. II, Wiley, New York, 1966, 1971

[6] C.-D. Fuh, “Uniform Markov renewal theory and ruin probabilities in Markov random walks”, Ann. Appl. Probab., 14 issue 3 (2004), 1202–1241

[7] P. G. Harrison, W. J. Knottenbelt, “Passage time distribution in large Markov chains”, Performance Evaluation Review, 2002, no. 30, 77–85

[8] J.J̇. Hunter, “Stationary distributions and mean first passage times of perturbed Markov chains”, Linear Algebra Appl., 410 (2005), 217–243

[9] J. Janssen, R. Manca, Applied semi-Markov processes, Springer, New York, 2006

[10] V. S. Koroliuk, N. Limnios, Stochastic systems in merging phase space, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005

[11] N. Limnios, B. Ouhbi,A. Sadek, “Empirical estimator of stationary distribution for semi-Markov processes”, Comm. Statist. Theory Methods, 34:4 (2005), 987–995

[12] M. Loève, Probability Theory, Van Nostrand, Toronto and Princeton, 1955, 1963

[13] V. H. Nguyen, Q. H. Vuong, M. N. Tran, “Central limit theorem for functional of jump Markov processes”, Vietnam J. Math., 33:4 (2005), 443–461

[14] D. S. Silvestrov, Limit Theorems for Randomly Stopped Stochastic Processes, Springer, London, 2004

[15] D. S. Silvestrov, M. O. Drozdenko, “Necessary and sufficient conditions for weak convergence of the first-rare-event times for semi-Markov processes,”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2005, no. 11, 25–28 (in Ukrainian)

[16] D. S. Silvestrov, M. O. Drozdenko, “Necessary and sufficient conditions for weak convergence of first-rare-event times for semi-Markov processes, I, II”, Theory of Stochastic Processes, 12 (28):3–4 (2006a, 2006b), 151–186, 187–202

[17] E. Solan, N. Vielle, “Perturbed Markov chains”, J. App. Probab., 40 (2003), 107–122

[18] M. A. Symeonaki, G. B. Stamou, “Rate of convergence, asymptotically attainable structures and sensitivity in non-homogeneous Markov systems with fuzzy states”, Fuzzy Sets and Systems, 157:1 (2006), 143–159

[19] Z. S. Szewczak, “A remark on a large deviation theorem for Markov chain with a finite number of states”, Teor. Veroyatn. Primen., 50:3 (2005), 612–622