Strong invariance principle for
Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 233-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

The strong invariance principle for renewal process and randomly stopped sums when summands belong to the domain of attraction of an $\alpha$-stable law is presented
Keywords: Lévy processes, stable processes, invariance principle, domain of attraction,renewal process, randomly stopped process, risk models.
@article{THSP_2007_13_4_a17,
     author = {Nadiia Zinchenko},
     title = {Strong invariance principle for},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {233--246},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a17/}
}
TY  - JOUR
AU  - Nadiia Zinchenko
TI  - Strong invariance principle for
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 233
EP  - 246
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a17/
LA  - en
ID  - THSP_2007_13_4_a17
ER  - 
%0 Journal Article
%A Nadiia Zinchenko
%T Strong invariance principle for
%J Teoriâ slučajnyh processov
%D 2007
%P 233-246
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a17/
%G en
%F THSP_2007_13_4_a17
Nadiia Zinchenko. Strong invariance principle for. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 233-246. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a17/

[1] Alex, M., Steinebach, J., “Invariance principles for renewal processes and some applications”, Teor. Imovirnost. ta Matem. Statyst, 50 (1994), 22–54

[2] Berkes, I, Dehling, H., Dobrovski, D., Philipp, W., “A strong approximation theorem for sums of random vectors in domain of attraction to a stable”, law, Acta Math. Hung., 48:1-2 (1986), 161–172

[3] Berkes, I., Dehling, H., “Almost sure and weak invariance principle for random variables attracted by a stable law”, Probab. Theory and Related Fields, 38:3 (1989), 331–353

[4] Billingsley, P., Convergence of Probability Measures, J.Wiley, New York, 1968

[5] Borovkov, K., “On the rate of convergence in the invariance principle for generalized renewal processes”, Teor. Veroyatnost. i Primenen., 27 (1982), 461–471

[6] Csörgö, M., Horváth, M., Steinebach, J., “Strong approximation for renewal processes”, C.R. Math. Rep. Acad. Sci. Canada., 8 (1986), 151–154

[7] Csörgö, M., Horváth, M., Steinebach, J., “Invariance principles for renewal processes”, Ann. Prob., 15 (1987), 1441–1460

[8] Csörgö, M., Révész, P., Strong Approximation in Probability and Statistics, Acad. Press., New York, 1981

[9] Csörgö, M., Horváth, L., Weighted Approximation in Probability and Statistics, J.Wiley, New York, 1993

[10] Csörgö, M., Deheuvels, P. and Horváth, M., “An approximation of stopped sums with applications to queueing theory”, Adv. Appl. Probab., 19 (1987), 674–690

[11] Deheuvels, P., Steinebach, J., “On the limiting behaviour of the Bahadur-Kiefer statistics for partial sums and renewal processes when the forth moment does not exist”, Statist. Probab. Letters, 13 (1992), 170–188

[12] Embrechts, P., Klüppelberg, C., Mikosch, T., Modelling Extremal Events, Springer-Verlag, Berlin, 1997

[13] Fisher, E., “An a.s.invariance principle for the random variables in the domain of attraction of a stable law”, Z. Wahr.verw. Geb., 67:4 (1984), 211–226

[14] Furrer, H., “Risk processes pertubed by $\alpha$-stable Lévy motion”, Scand. Actuarial. J., 1998, no. 1, 59–74

[15] Furrur, H., Michna, Z., Weron, A., “Stable Lévy motion approximation in col lective risk theory”, Insurance Math. Econ., 20 (1997), 97–114

[16] v. II

[17] Gnedenko, B. V., Korolev, V. Yu., Random Summation: Limit Theorems and Applications, FL CRC Press, Baca Raton, 1996

[18] Grandell J., Aspects of Risk Theory, Springer, Berlin, 1991

[19] Gut, A., Stopped Random Walks, Springer, Berlin, 1988

[20] Iglehart, D. L., “Diffusion approximation in collective risk theory”, J. Appl. Probab., 6, 285–292

[21] Korolev, V., Bening, V., Shorgin, S., Mathematical Foundations of Risk Theory, Fizmatlit, Moscow, 2007 (Rus)

[22] Loéve, M., Probability Theory, 4th edition, Springer, Berlin, 1978

[23] Mijnheer, J., “Strong approximation of partial sums of independent identically distributed random variables in the domain of attraction of a symmetric distribution”, Proc. 9th Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Czechoslovak Acad. Sci., Prague, (1983)), 83–89

[24] Theory Probab. Math. Statist., 53 (1995)

[25] Silvestrov, D., Limit Theorems for Composite Random Functions, Vyscha Shkola, Kyiv, 1974 (Rus.)

[26] Silvestrov, D., Limit Theorems for Randomly Stopped Stochastic Processes, Springer-Verlag, London, 2004

[27] Skorokhod, A. V., Studies in the Theory of Random Processes, Kiev Univ., 1961

[28] Stout, W., “Almost sure invariance principle when $Ex^2_1=\infty$”, Z. Wahr.verw. Geb., 49:1 (1979), 23–32

[29] Strassen, V., “An invariance principle for the LIL”, Z. Wahr. verw. Geb., 3 (1964), 211–226

[30] Strassen, V., “Almost sure behavior for sums of independent r.v. and martingales”, Pros. 5th Berkeley Symp.2, 1967, 315–343

[31] Whitt, W., Stochastic-Processes Limits: An Introduction to Stochastic- Process Limits and Their Application to Queues, Springer-Verlag, New York, 2002

[32] Zinchenko, N., “Approximation of sums of r.v. in the domain of attraction of a stable law”, Dokl. Akad. Nauk Ukrain. SSR, Ser. A, 1983, no. 11, 9–12 (Rus.)

[33] Theory Probab. Appl., 30 (1985)

[34] Theory Probab. Math. Statist., 58 (1998)

[35] Theory Probab. Math. Statist., 63 (2001)