Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_4_a17, author = {Nadiia Zinchenko}, title = {Strong invariance principle for}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {233--246}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a17/} }
Nadiia Zinchenko. Strong invariance principle for. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 233-246. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a17/
[1] Alex, M., Steinebach, J., “Invariance principles for renewal processes and some applications”, Teor. Imovirnost. ta Matem. Statyst, 50 (1994), 22–54
[2] Berkes, I, Dehling, H., Dobrovski, D., Philipp, W., “A strong approximation theorem for sums of random vectors in domain of attraction to a stable”, law, Acta Math. Hung., 48:1-2 (1986), 161–172
[3] Berkes, I., Dehling, H., “Almost sure and weak invariance principle for random variables attracted by a stable law”, Probab. Theory and Related Fields, 38:3 (1989), 331–353
[4] Billingsley, P., Convergence of Probability Measures, J.Wiley, New York, 1968
[5] Borovkov, K., “On the rate of convergence in the invariance principle for generalized renewal processes”, Teor. Veroyatnost. i Primenen., 27 (1982), 461–471
[6] Csörgö, M., Horváth, M., Steinebach, J., “Strong approximation for renewal processes”, C.R. Math. Rep. Acad. Sci. Canada., 8 (1986), 151–154
[7] Csörgö, M., Horváth, M., Steinebach, J., “Invariance principles for renewal processes”, Ann. Prob., 15 (1987), 1441–1460
[8] Csörgö, M., Révész, P., Strong Approximation in Probability and Statistics, Acad. Press., New York, 1981
[9] Csörgö, M., Horváth, L., Weighted Approximation in Probability and Statistics, J.Wiley, New York, 1993
[10] Csörgö, M., Deheuvels, P. and Horváth, M., “An approximation of stopped sums with applications to queueing theory”, Adv. Appl. Probab., 19 (1987), 674–690
[11] Deheuvels, P., Steinebach, J., “On the limiting behaviour of the Bahadur-Kiefer statistics for partial sums and renewal processes when the forth moment does not exist”, Statist. Probab. Letters, 13 (1992), 170–188
[12] Embrechts, P., Klüppelberg, C., Mikosch, T., Modelling Extremal Events, Springer-Verlag, Berlin, 1997
[13] Fisher, E., “An a.s.invariance principle for the random variables in the domain of attraction of a stable law”, Z. Wahr.verw. Geb., 67:4 (1984), 211–226
[14] Furrer, H., “Risk processes pertubed by $\alpha$-stable Lévy motion”, Scand. Actuarial. J., 1998, no. 1, 59–74
[15] Furrur, H., Michna, Z., Weron, A., “Stable Lévy motion approximation in col lective risk theory”, Insurance Math. Econ., 20 (1997), 97–114
[16] v. II
[17] Gnedenko, B. V., Korolev, V. Yu., Random Summation: Limit Theorems and Applications, FL CRC Press, Baca Raton, 1996
[18] Grandell J., Aspects of Risk Theory, Springer, Berlin, 1991
[19] Gut, A., Stopped Random Walks, Springer, Berlin, 1988
[20] Iglehart, D. L., “Diffusion approximation in collective risk theory”, J. Appl. Probab., 6, 285–292
[21] Korolev, V., Bening, V., Shorgin, S., Mathematical Foundations of Risk Theory, Fizmatlit, Moscow, 2007 (Rus)
[22] Loéve, M., Probability Theory, 4th edition, Springer, Berlin, 1978
[23] Mijnheer, J., “Strong approximation of partial sums of independent identically distributed random variables in the domain of attraction of a symmetric distribution”, Proc. 9th Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Czechoslovak Acad. Sci., Prague, (1983)), 83–89
[24] Theory Probab. Math. Statist., 53 (1995)
[25] Silvestrov, D., Limit Theorems for Composite Random Functions, Vyscha Shkola, Kyiv, 1974 (Rus.)
[26] Silvestrov, D., Limit Theorems for Randomly Stopped Stochastic Processes, Springer-Verlag, London, 2004
[27] Skorokhod, A. V., Studies in the Theory of Random Processes, Kiev Univ., 1961
[28] Stout, W., “Almost sure invariance principle when $Ex^2_1=\infty$”, Z. Wahr.verw. Geb., 49:1 (1979), 23–32
[29] Strassen, V., “An invariance principle for the LIL”, Z. Wahr. verw. Geb., 3 (1964), 211–226
[30] Strassen, V., “Almost sure behavior for sums of independent r.v. and martingales”, Pros. 5th Berkeley Symp.2, 1967, 315–343
[31] Whitt, W., Stochastic-Processes Limits: An Introduction to Stochastic- Process Limits and Their Application to Queues, Springer-Verlag, New York, 2002
[32] Zinchenko, N., “Approximation of sums of r.v. in the domain of attraction of a stable law”, Dokl. Akad. Nauk Ukrain. SSR, Ser. A, 1983, no. 11, 9–12 (Rus.)
[33] Theory Probab. Appl., 30 (1985)
[34] Theory Probab. Math. Statist., 58 (1998)
[35] Theory Probab. Math. Statist., 63 (2001)