Random process from the class $V (\varphi, \psi)$
Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 219-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

Random processes from the class $V (\varphi, \psi)$ which is more general than the class of $\psi$-sub-Gaussian random process. The upper estimate of the probability that a random process from the class $V (\varphi, \psi)$ exceeds some function is obtained. The results are applied to generalized process of fractional Brownian motion.
Keywords: Sub-Gaussian process, generalized fractional Brownian motion, metric entropy, buffer overflow probability, ruin probability.
@article{THSP_2007_13_4_a16,
     author = {Rostyslav Yamnenko and Olga Vasylyk},
     title = {Random process from the class $V (\varphi, \psi)$},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {219--232},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a16/}
}
TY  - JOUR
AU  - Rostyslav Yamnenko
AU  - Olga Vasylyk
TI  - Random process from the class $V (\varphi, \psi)$
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 219
EP  - 232
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a16/
LA  - en
ID  - THSP_2007_13_4_a16
ER  - 
%0 Journal Article
%A Rostyslav Yamnenko
%A Olga Vasylyk
%T Random process from the class $V (\varphi, \psi)$
%J Teoriâ slučajnyh processov
%D 2007
%P 219-232
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a16/
%G en
%F THSP_2007_13_4_a16
Rostyslav Yamnenko; Olga Vasylyk. Random process from the class $V (\varphi, \psi)$. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 219-232. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a16/

[1] Buldygin, V. V., Kozachenko, Yu. V., Metric Characterization of Random Variables and Random Processes, American Mathematical Society, Providence, RI, 2000

[2] R. Giuliano-Antonini, Yu. Kozachenko, T. Nikitina, “Spaces of $\phi$-Subgaussian Random Variables”, Rendiconti. Academia Nazionale delle Scienze detta dei XL. Memorie di Matematica e Applicazioni 121$^\circ$, XXVII, fasc.1 (2003), 95–124

[3] Kozachenko Yu. V., Kovalchuk Yu. A., “Boundary value problems with random initial conditions, and functional series from $Sub_{\varphi}(\Omega)$”, Ukrain.Mat.Zn., 50:4 (1998), 504–515

[4] Kozachenko Yu., Sottinen T., Vasilik O., “Weakly self-similar stationary increment processes from the space $SSub_\varphi(\Omega)$”, Probab. Theory and Math. Statistics, 65 (2001), 67–78

[5] Kozachenko Yu., Vasylyk O., Yamnenko R., “On the probability of exceeding some curve by $\varphi$-subgaussian random process”, Theory of Stochastic Processes, 9(25):3-4 (2003), 70–80

[6] Kozachenko Yu., Vasylyk O., Yamnenko R., “Upper estimate of overrunning by $Sub_\varphi(\Omega)$ random process the level specified by continuous function”, Random Operators and Stochastic Equations, 13:2 (2005), 111–128

[7] Kozachenko Yu., Vasylyk O., “Random processes from classes $V(\varphi,\psi)$”, Probab. Theory and Math. Statistics, 63 (2000), 100–111

[8] Yamnenko R., “Ruin probability for generalized $\varphi$-sub-Gaussian fractional Brownian motion”, Theory of Stochastic Processes, 12(28):3-4 (2009), 261–275