Convergence of option rewards for Markov type price processes
Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 189-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general price process represented by a two-component Markov process is considered. Its first component is interpreted as a price process and the second one as an index process controlling the price component. American type options with pay-off functions, which admit power type upper bounds, are studied. Both the transition characteristics of the price processes and the pay-off functions are assumed to depend on a perturbation parameter $\delta\geq0$ and to converge to the corresponding limit characteristics as $\delta\to0.$ Results about the convergence of reward functionals for American type options for perturbed processes are presented for models with continuous and discrete time as well as asymptotically uniform skeleton approximations connecting reward functionals for continuous and discrete time models.
Keywords: Reward, optimal stopping, American option, skeleton approximation, Markov type price process, stochastic index.
Mots-clés : convergence
@article{THSP_2007_13_4_a13,
     author = {D. Silvestrov and H. J\"onsson and F. Stenberg},
     title = {Convergence of option rewards for {Markov} type price processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {189--200},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a13/}
}
TY  - JOUR
AU  - D. Silvestrov
AU  - H. Jönsson
AU  - F. Stenberg
TI  - Convergence of option rewards for Markov type price processes
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 189
EP  - 200
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a13/
LA  - en
ID  - THSP_2007_13_4_a13
ER  - 
%0 Journal Article
%A D. Silvestrov
%A H. Jönsson
%A F. Stenberg
%T Convergence of option rewards for Markov type price processes
%J Teoriâ slučajnyh processov
%D 2007
%P 189-200
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a13/
%G en
%F THSP_2007_13_4_a13
D. Silvestrov; H. Jönsson; F. Stenberg. Convergence of option rewards for Markov type price processes. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 189-200. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a13/

[1] K. Amin, A. Khanna, “Convergence of American option values from discrete- to continuous-time financial models”, Math. Finance, 4:4 (1994), 289–304

[2] G. Barone-Adesi, R. Whaley, “Efficient analytical approximation of American option values”, J. Finance, 42 (1987), 301–310

[3] F. Coquet, S. Toldo, “Convergence of values in optimal stopping and convergence of optimal stopping times”, Electr. J. Probab., 12 (2007), 207–228

[4] J. Cox, S. Ross, M. Rubinstein, “Option price: A simplified approach”, J. Finanic. Econom., 7 (1979), 229–263

[5] N. J. Cutland, P. E. Kopp, W. Willinger, M. C. Wyman, “Convergence of Snell envelopes and critical prices in the American put”, Mathematics of Derivative Securities, eds. Dempster, M.A.H. et al., Inst. Cambridge Univ. Press, Newton, 1997, 126–140

[6] V. M. Dochviri, “On optimal stopping with incomplete data”, Probability Theory and Mathematical Statistics, Kyoto, 1986., Lecture Notes in Mathematics, 1299, Springer, Berlin, 1988, 64–68

[7] Proc. Steklov Inst. Math., 202:4 (1993), 97–106

[8] V. Dochviri, M. Shashiashvili, “On the optimal stopping of a homogeneous Markov process on a finite time interval”, Math.Nachr., 156 (1992), 269–281

[9] P. Dupuis, H. Wang, “On the convergence from discrete time to continuous time in an optimal stopping problem”, Ann. Appl. Probab., 15 (2005), 1339–1366

[10] H. Fährmann, “Zur Konvergenz der optimalen Werte der Gewinnfunktion beim Abbruch von Zufallsprozessen im Fallen von unvollstndiger Information”, Math. Operationsforsch. Statist., Ser. Statist., 9:2 (1978), 241–253

[11] H. Fährmann, “On the convergence of the value in optimal stopping of random sequences with incomplete data”, Zastos. Mat., 16:3 (1979), 415–428

[12] H. Fährmann, “Convergence of values in optimal stopping of partially observable random sequences with quadratic rewards”, Theory Probab. Appl., 27 (1982), 386–391

[13] H. Fährmann, “Monte Carlo studies of American type options with discrete time”, Theory Stoch. Process., 7(23):1-2 (2001), 163–188

[14] H. Jönsson, Optimal Stopping Domains and Reward Functions for Discrete Time American Type Options, Ph.D. Thesis, Mälardalen University, 2005, 22 pp.

[15] Theory Probab. Math. Statist., 71, 93–103

[16] Theory Probab. Math. Statist., 72, 47–58

[17] Kukush, A. G., Silvestrov, D. S., Probabilistic Constrained Optimisation: Methodology and Applications, ed. Uryasev, S., Kluwer, 2000

[18] Kukush, A. G., Silvestrov, D. S., “Skeleton approximation of optimal stopping strategies for American type options with continuous time”, Theory Stoch. Process., 7(23):1-2 (2001), 215–230

[19] Kukush, A. G., Silvestrov, D. S., “Optimal price of American type options with discrete time”, Theory Stoch. Process., 10(26):1-2 (2004), 72–96

[20] Lamberton, D., “Convergence of the critical price in the approximation of American options”, Math. Finance, 3:2 (1993), 179–190

[21] Mackevičius, V., “Convergence of the prices of games in problems of optimal stopping of Markovian processes”, Lit.Mat.Sb., 13:1 (1973), 115–128

[22] Mackevičius, V., “Convergence of the prices of games in problems of optimal stopping of Markovian processes”, Lith. Math. Trans., 14:1 (1975), 83–96

[23] Mulinacci, S., Pratelli, M., “Functional convergence of Snell envelopes: Applications to American options approximations”, Finance Stochast., 2 (1998), 311–327

[24] Neiuwenhuis, J. W., Vellekoop, M. H., “Weak convergence of three methods, to price options on defautable assets”, Decis. Econom. Finance, 27 (2004), 87–107

[25] Peskir, G. Shiryaev, A., Optimal Stopping and Free-Boundary Problems, Birkhäuser, Basel, 2006

[26] Prigent, J. L., Weak Convergence of Financial Markets, Springer, New York, 2003

[27] Silvestrov, D., Jönsson, H., Stenberg, F., Convergence of option rewards for Markov type price processes controlled by stochastic indices. 1, Research Report 2006-1. Department of Mathematics and Physics, Mälardalen University, (2006)

[28] Silvestrov, D. S., Stenberg, F., “A price process with stochastic volatility controlled by a semi-Markov process”, Comm. Statist., 33:3 (2004), 591–608

[29] Stenberg, F., Semi-Markov Models for Insurance and Option Rewards, Ph.D. Thesis 38, Mälardalen University, 2007