Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_4_a13, author = {D. Silvestrov and H. J\"onsson and F. Stenberg}, title = {Convergence of option rewards for {Markov} type price processes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {189--200}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a13/} }
TY - JOUR AU - D. Silvestrov AU - H. Jönsson AU - F. Stenberg TI - Convergence of option rewards for Markov type price processes JO - Teoriâ slučajnyh processov PY - 2007 SP - 189 EP - 200 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a13/ LA - en ID - THSP_2007_13_4_a13 ER -
D. Silvestrov; H. Jönsson; F. Stenberg. Convergence of option rewards for Markov type price processes. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 189-200. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a13/
[1] K. Amin, A. Khanna, “Convergence of American option values from discrete- to continuous-time financial models”, Math. Finance, 4:4 (1994), 289–304
[2] G. Barone-Adesi, R. Whaley, “Efficient analytical approximation of American option values”, J. Finance, 42 (1987), 301–310
[3] F. Coquet, S. Toldo, “Convergence of values in optimal stopping and convergence of optimal stopping times”, Electr. J. Probab., 12 (2007), 207–228
[4] J. Cox, S. Ross, M. Rubinstein, “Option price: A simplified approach”, J. Finanic. Econom., 7 (1979), 229–263
[5] N. J. Cutland, P. E. Kopp, W. Willinger, M. C. Wyman, “Convergence of Snell envelopes and critical prices in the American put”, Mathematics of Derivative Securities, eds. Dempster, M.A.H. et al., Inst. Cambridge Univ. Press, Newton, 1997, 126–140
[6] V. M. Dochviri, “On optimal stopping with incomplete data”, Probability Theory and Mathematical Statistics, Kyoto, 1986., Lecture Notes in Mathematics, 1299, Springer, Berlin, 1988, 64–68
[7] Proc. Steklov Inst. Math., 202:4 (1993), 97–106
[8] V. Dochviri, M. Shashiashvili, “On the optimal stopping of a homogeneous Markov process on a finite time interval”, Math.Nachr., 156 (1992), 269–281
[9] P. Dupuis, H. Wang, “On the convergence from discrete time to continuous time in an optimal stopping problem”, Ann. Appl. Probab., 15 (2005), 1339–1366
[10] H. Fährmann, “Zur Konvergenz der optimalen Werte der Gewinnfunktion beim Abbruch von Zufallsprozessen im Fallen von unvollstndiger Information”, Math. Operationsforsch. Statist., Ser. Statist., 9:2 (1978), 241–253
[11] H. Fährmann, “On the convergence of the value in optimal stopping of random sequences with incomplete data”, Zastos. Mat., 16:3 (1979), 415–428
[12] H. Fährmann, “Convergence of values in optimal stopping of partially observable random sequences with quadratic rewards”, Theory Probab. Appl., 27 (1982), 386–391
[13] H. Fährmann, “Monte Carlo studies of American type options with discrete time”, Theory Stoch. Process., 7(23):1-2 (2001), 163–188
[14] H. Jönsson, Optimal Stopping Domains and Reward Functions for Discrete Time American Type Options, Ph.D. Thesis, Mälardalen University, 2005, 22 pp.
[15] Theory Probab. Math. Statist., 71, 93–103
[16] Theory Probab. Math. Statist., 72, 47–58
[17] Kukush, A. G., Silvestrov, D. S., Probabilistic Constrained Optimisation: Methodology and Applications, ed. Uryasev, S., Kluwer, 2000
[18] Kukush, A. G., Silvestrov, D. S., “Skeleton approximation of optimal stopping strategies for American type options with continuous time”, Theory Stoch. Process., 7(23):1-2 (2001), 215–230
[19] Kukush, A. G., Silvestrov, D. S., “Optimal price of American type options with discrete time”, Theory Stoch. Process., 10(26):1-2 (2004), 72–96
[20] Lamberton, D., “Convergence of the critical price in the approximation of American options”, Math. Finance, 3:2 (1993), 179–190
[21] Mackevičius, V., “Convergence of the prices of games in problems of optimal stopping of Markovian processes”, Lit.Mat.Sb., 13:1 (1973), 115–128
[22] Mackevičius, V., “Convergence of the prices of games in problems of optimal stopping of Markovian processes”, Lith. Math. Trans., 14:1 (1975), 83–96
[23] Mulinacci, S., Pratelli, M., “Functional convergence of Snell envelopes: Applications to American options approximations”, Finance Stochast., 2 (1998), 311–327
[24] Neiuwenhuis, J. W., Vellekoop, M. H., “Weak convergence of three methods, to price options on defautable assets”, Decis. Econom. Finance, 27 (2004), 87–107
[25] Peskir, G. Shiryaev, A., Optimal Stopping and Free-Boundary Problems, Birkhäuser, Basel, 2006
[26] Prigent, J. L., Weak Convergence of Financial Markets, Springer, New York, 2003
[27] Silvestrov, D., Jönsson, H., Stenberg, F., Convergence of option rewards for Markov type price processes controlled by stochastic indices. 1, Research Report 2006-1. Department of Mathematics and Physics, Mälardalen University, (2006)
[28] Silvestrov, D. S., Stenberg, F., “A price process with stochastic volatility controlled by a semi-Markov process”, Comm. Statist., 33:3 (2004), 591–608
[29] Stenberg, F., Semi-Markov Models for Insurance and Option Rewards, Ph.D. Thesis 38, Mälardalen University, 2007