Limit behavior of autonomous random oscillating system of third order
Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 19-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior of the general type third order autonomous oscillating system under the action of small non-linear random perturbations of “white” and “Poisson” types is investigated.
Keywords: Asymptotic behavior, third order autonomous oscillating system, small non-linear random perturbations.
@article{THSP_2007_13_4_a1,
     author = {Oleksandr D. Borysenko and Olga V. Borysenko},
     title = {Limit behavior of autonomous random oscillating system of third order},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a1/}
}
TY  - JOUR
AU  - Oleksandr D. Borysenko
AU  - Olga V. Borysenko
TI  - Limit behavior of autonomous random oscillating system of third order
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 19
EP  - 28
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a1/
LA  - en
ID  - THSP_2007_13_4_a1
ER  - 
%0 Journal Article
%A Oleksandr D. Borysenko
%A Olga V. Borysenko
%T Limit behavior of autonomous random oscillating system of third order
%J Teoriâ slučajnyh processov
%D 2007
%P 19-28
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a1/
%G en
%F THSP_2007_13_4_a1
Oleksandr D. Borysenko; Olga V. Borysenko. Limit behavior of autonomous random oscillating system of third order. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 19-28. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a1/

[1] N. M. Krylov, N. N. Bogolyubov, Introduction to non-linear mechanics, Publ.Acad.Scien. UkrSSR, Kyiv, 1937

[2] N. N. Bogolyubov, Yu. A. Mitropolskij, Asymptotic methods in the theory of non-linear oscillations, Nauka, M., 1974

[3] Yu. A. Mitropolskij, V. G. Kolomiets, “On the action of random forces to the non-linear oscillating systems”, Math. physics and non-linear mechanics, 39:5 (1986), 23–34

[4] O. V. Borysenko, “Small random parturbations in oscillating systems of second order”, Ukr.Math.Journ., 44:1 (1992)

[5] O. V. Borysenko, “Behaviour of non-autonomous oscillating system under the action of small random perturbations in the resonance case”, Ukr.Math. Journ., 44:12 (1992)

[6] O. D. Borysenko, O. V. Borysenko, “Asymptotic behaviour of stochastic dynamical system”, Theory of optimal decisions, 1999, Inst.Cibernetics NANU, Kyiv

[7] O. D. Borysenko, O. V. Borysenko, I. G. Malyshev, “Limit behaviour of dynamical system under action of small random perturbations in non-resonance case”, Theory of optimal decisions, 2002, no. 1, 70–78, Inst.Cibernetics NANU, Kyiv

[8] O. D. Borysenko, O. V. Borysenko, I. G. Malyshev, “Asymptotic behavior of third order random oscillation system in the resonance case”, Theory of Stoch. Proc., 9(25):3–4 (2003), 1–11

[9] O. D. Borysenko, I. G. Malyshev, “The limit behaviour of integral functional of the solut ion of stochastic differential equation depending on small parameter”, Theory of Stoch.Proc., 7(23):1–2 (2001), 30–36

[10] I. I. Gikhman, A. V. Skorokhod, Stochastic Differential Equations, Springer-Verlag, Berlin, 1972

[11] A. V. Skorokhod, Studies in the Theory of Random Processes, Addison-Wesley, 1965

[12] I. I. Gikhman, A. V. Skorokhod, The Theory of Stochastic Processes, v. v.I, Springer-Verlag, Berlin, 1974

[13] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland,, Amsterdam, 1981