The length of the interval of indeterminacy for the estimate of multiple change-points
Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 251-266
Voir la notice de l'article provenant de la source Math-Net.Ru
This article considers the problem of estimating the length of the interval of indeterminacy during construction of change-points' estimates using dynamical programming. It was proved that mathematical expectation of the length of the interval has asymptotically linear dependency on the penalty for a change of distribution when the number of estimations tends to infinity.
Keywords:
Change-points, dynamical programming.
@article{THSP_2007_13_2_a8,
author = {Grigorij Shurenkov},
title = {The length of the interval of indeterminacy for the estimate of multiple change-points},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {251--266},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a8/}
}
TY - JOUR AU - Grigorij Shurenkov TI - The length of the interval of indeterminacy for the estimate of multiple change-points JO - Teoriâ slučajnyh processov PY - 2007 SP - 251 EP - 266 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a8/ LA - en ID - THSP_2007_13_2_a8 ER -
Grigorij Shurenkov. The length of the interval of indeterminacy for the estimate of multiple change-points. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 251-266. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a8/