Bias control in the estimation of
Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 225-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider estimators for integrals of a spectrum and a bispectrum for random fields $X(t), t\in{\mathbb R}^d,$ and present conditions guaranteeing the rate of convergence of bias to zero appropriate for dimensions $d =1, 2, 3.$
Keywords: Spectral functionals, nonparametric estimation, periodogram, bias, tapering.
@article{THSP_2007_13_2_a5,
     author = {Ludmila Sakhno},
     title = {Bias control in the estimation of},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {225--233},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a5/}
}
TY  - JOUR
AU  - Ludmila Sakhno
TI  - Bias control in the estimation of
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 225
EP  - 233
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a5/
LA  - en
ID  - THSP_2007_13_2_a5
ER  - 
%0 Journal Article
%A Ludmila Sakhno
%T Bias control in the estimation of
%J Teoriâ slučajnyh processov
%D 2007
%P 225-233
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a5/
%G en
%F THSP_2007_13_2_a5
Ludmila Sakhno. Bias control in the estimation of. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 225-233. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a5/

[1] V. G. Alekseev, “New modifications of second- and third-order periodorgrams”, Theory Probab. Appl., 42 (1997), 559-–567

[2] V. V. Anh, N. N. Leonenko, L. M. Sakhno, “Quasilikelihood-based higher-order spectral estimation of random processes and fields with possible long- range dependence”, J. Appl. Probab., 41A (2004), 35-–54

[3] V. V. Anh, N. N. Leonenko, L. M. Sakhno, “Minimum contrast estimation of random processes based on information of second and third orders”, J.Statist. Plann. Inference, 2006 (to appear)

[4] R. Bentkus, “On the error of the estimate of the spectral function of a stationary process”, Liet. Mat. Rink., 12 (1972), 55-–71 (in Russian)

[5] R. Bentkus, “Cumulants of estimates of the spectrum of a stationary sequence”, Liet. Mat. Rink., 16 (1976), 37-–61 (in Russian)

[6] R. Bentkus, R. Rutkauskas, “On the asymptotics of the first two moments of second order spectral estimators”, Litovsk. Mat. Sb., 13 (1973), 29-–45 (in Russian)

[7] R. Bentkus, R. Rutkauskas, Ju. Sušinskas, “The average of the estimates of the spectrum of a homogeneous field”, Liet. Mat. Rink., 14 (1974), 67-–74 (in Russian)

[8] D. R. Brillinger, “The frequency analysis of relations between stationary spatial series”, Proceedings of the Twelfth Biennial Seminar of the Canadian Mathematical Congress (Montreal (1970)), 39-–81

[9] R. Dahlhaus, H. Künsch, “Edge effects and effcient parameter estimation for stationary random fields”, Biometrika, 74 (1987), 877–882

[10] X. Guyon, Random Fields on a Network, Springer, New York, 1995

[11] P. M. Robinson, “Nonparametric spectrum estimation for spatial data”, J. Statist. Plann. Inference, 2006 (to appear)

[12] P. M. Robinson, J. Vidal Sanz, “Modified Whittle estimation of multilateral models on a lattice”, J. Multivariate Anal., 97 (2006), 1090–1120