Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_2_a4, author = {M. Pratsiovytyi and O. Yu. Feshchenko}, title = {Topological, metric and fractal}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {205--224}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a4/} }
M. Pratsiovytyi; O. Yu. Feshchenko. Topological, metric and fractal. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 205-224. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a4/
[1] S. Albeverio, Ya. Gontcharenko, M. Pratsiovytyi, G. Torbin, Convolutions of distributions of random variables with independent binary digits, SFB-611 Preprint no. 23, Bonn University, 2002
[2] S. Albeverio, Ya. Gontcharenko, M. Pratsiovytyi, G. Torbin, “Jessen-Wintner type random variables and fractal properties of their distributions”, Math. Nachr., 279:15 (2006), 1619–1633
[3] S. Albeverio, M. Pratsiovytyi, G. Torbin, “Fractal probability distributions and transformations preserving the Hausdorff-Besicovitch dimension”, Ergodic Theory Dynam. Systems, 24:1 (2004), 1–16
[4] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965
[5] S. D. Chatterji, “Certain induced measures on the unit interval”, J. London Math. Soc., 38 (1963), 325–331
[6] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester, 1990
[7] K. J. Falconer, “One-sided multifractal analysis and points of non-differentiability of devil’s staircases”, Math. Proc. Cambridge Philos. Soc., 136:1 (2004), 167–174
[8] Ya. V. Gontcharenko, “Asymptotic properties of characteristic function of random variable with independent binary digits and convolutions of singular probability distributions”, Transactions of the Dragomanov National Pedagogical University of Ukraine. Phys.-Math. Sciences, 2002, no. 3, 376–390, Dragomanov National Pedagogical University of Ukraine, Kyiv
[9] Ya. V. Gontcharenko, M. V. Pratsiovytyi, G. M. Torbin, “Fractal properties of probability distributions on the set of incomplete sums of positive series”, Transactions of the Dragomanov National Pedagogical University of Ukraine. Series 1. Phys.-Math. Sciences, 2005, no. 6, 232–250, Dragomanov National Pedagogical University of Ukraine, Kyiv
[10] P.-L. Hennequin,A. Tortrat, Theorie des probabilites et quelques applications, Masson et Cie, Editeurs, Paris, 1965
[11] B. Jessen, A. Wintner, “Distribution functions and the Riemann zeta function”, Trans. Amer. Math. Soc., 38:1 (1935), 48-–88
[12] P. Lévy, “Sur les séries dont les termes sont des variables éventuelles indépendantes”, Studia Math., 3 (1931), 119–155
[13] Q.-H. Liu, Z.-Y. Wen, “On dimensions of multitype Moran sets”, Math.Proc. Cambridge Philos. Soc., 139:3 (2005), 541–553
[14] E. Lukacs, Characteristic Functions, Hafner Publishing Co., New York, 1970
[15] R. Lyons, “Seventy years of Rajchman measures”, J. Fourier Anal. Appl.,, 1995, Kahane Spesial Issue, 363–377
[16] G. Marsaglia, “Random variables with independent binary digits”, Ann. Math. Statist., 42:2 (1971), 1922-–1929
[17] Y. Peres, W. Schlag, B. Solomyak, “Sixty years of Bernoulli convolutions”, Fractal Geometry and Stochastics II, Progr. Probab., 46, Birkhäuser, Basel, 2000, 39-–65
[18] Y. Peres, B. Solomyak, “Absolute continuity of Bernoulli convolutions, a simple proof”, Math. Res. Lett., 3:2 (1996), 231-–239
[19] M. V. Pratsiovytyi, “Distributions of sums of random power series”, Dopov.Nats. Akad. Nauk Ukra$\ddot{\imath}$ni, 1996, no. 5, 32-–37
[20] M. V. Pratsiovytyi, Fractal Approach to Investigations of Singular Probability Distributions, Dragomanov National Pedagogical University, Kyiv, 1998
[21] M. V. Pratsiovytyi, G. M. Torbin, “Fractal geometry and transformations preserving the Hausdorff-Besicovitch dimension”, Dynamical systems: Proceedings of the Ukrainian Mathematical Congress–2001, Institute for Mathematics of NAS of Ukraine, Kyiv, 2003, 77-–93
[22] J. I. Reich, “Some results on distributions arising from coin tossing”, Ann. Probab., 10:3 (1982), 780-–786
[23] J. I. Reich, “When do wieghted sums of independent random variables have a density—some results and examples”, Ann. Probab., 10:3 (1982), 787-–798
[24] R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427-–439
[25] B. Solomyak, “On the random series $\sum\pm\lambda^n$ (an Erdös problem)”, Ann. of Math. (2), 142:3 (1995), 611-–625
[26] T. Šalát, “Hausdorff measure of linear sets”, Czechoslovak Math. J., 86:11 (1961), 24-–56
[27] A. F. Turbin, M. V. Pratsiovytyi, Fractal Sets, Functions, and Probability Distributions, Naukova Dumka, Kyiv, 1992