Topological, metric and fractal
Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 205-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure, topological, metric and fractal properties of the distribution of random incomplete sum of the convergent positive series with independent terms under certain conditions on the rate of convergence of series and on the distributions of its terms. We also study the behaviour of the absolute value of the characteristic function of this random variable at infinity and the fractal dimension preservation by its distribution function.
Keywords: Set of incomplete sums of series, singularly continuous probability distributions, absolutely continuous probability distributions, Hausdorff-Billingsley dimension, fractals, characteristic function of random variable, transformations preserving fractal dimensions.
Mots-clés : Hausdorff-Besicovitch dimension
@article{THSP_2007_13_2_a4,
     author = {M. Pratsiovytyi and O. Yu. Feshchenko},
     title = {Topological, metric and fractal},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {205--224},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a4/}
}
TY  - JOUR
AU  - M. Pratsiovytyi
AU  - O. Yu. Feshchenko
TI  - Topological, metric and fractal
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 205
EP  - 224
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a4/
LA  - en
ID  - THSP_2007_13_2_a4
ER  - 
%0 Journal Article
%A M. Pratsiovytyi
%A O. Yu. Feshchenko
%T Topological, metric and fractal
%J Teoriâ slučajnyh processov
%D 2007
%P 205-224
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a4/
%G en
%F THSP_2007_13_2_a4
M. Pratsiovytyi; O. Yu. Feshchenko. Topological, metric and fractal. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 205-224. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a4/

[1] S. Albeverio, Ya. Gontcharenko, M. Pratsiovytyi, G. Torbin, Convolutions of distributions of random variables with independent binary digits, SFB-611 Preprint no. 23, Bonn University, 2002

[2] S. Albeverio, Ya. Gontcharenko, M. Pratsiovytyi, G. Torbin, “Jessen-Wintner type random variables and fractal properties of their distributions”, Math. Nachr., 279:15 (2006), 1619–1633

[3] S. Albeverio, M. Pratsiovytyi, G. Torbin, “Fractal probability distributions and transformations preserving the Hausdorff-Besicovitch dimension”, Ergodic Theory Dynam. Systems, 24:1 (2004), 1–16

[4] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965

[5] S. D. Chatterji, “Certain induced measures on the unit interval”, J. London Math. Soc., 38 (1963), 325–331

[6] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester, 1990

[7] K. J. Falconer, “One-sided multifractal analysis and points of non-differentiability of devil’s staircases”, Math. Proc. Cambridge Philos. Soc., 136:1 (2004), 167–174

[8] Ya. V. Gontcharenko, “Asymptotic properties of characteristic function of random variable with independent binary digits and convolutions of singular probability distributions”, Transactions of the Dragomanov National Pedagogical University of Ukraine. Phys.-Math. Sciences, 2002, no. 3, 376–390, Dragomanov National Pedagogical University of Ukraine, Kyiv

[9] Ya. V. Gontcharenko, M. V. Pratsiovytyi, G. M. Torbin, “Fractal properties of probability distributions on the set of incomplete sums of positive series”, Transactions of the Dragomanov National Pedagogical University of Ukraine. Series 1. Phys.-Math. Sciences, 2005, no. 6, 232–250, Dragomanov National Pedagogical University of Ukraine, Kyiv

[10] P.-L. Hennequin,A. Tortrat, Theorie des probabilites et quelques applications, Masson et Cie, Editeurs, Paris, 1965

[11] B. Jessen, A. Wintner, “Distribution functions and the Riemann zeta function”, Trans. Amer. Math. Soc., 38:1 (1935), 48-–88

[12] P. Lévy, “Sur les séries dont les termes sont des variables éventuelles indépendantes”, Studia Math., 3 (1931), 119–155

[13] Q.-H. Liu, Z.-Y. Wen, “On dimensions of multitype Moran sets”, Math.Proc. Cambridge Philos. Soc., 139:3 (2005), 541–553

[14] E. Lukacs, Characteristic Functions, Hafner Publishing Co., New York, 1970

[15] R. Lyons, “Seventy years of Rajchman measures”, J. Fourier Anal. Appl.,, 1995, Kahane Spesial Issue, 363–377

[16] G. Marsaglia, “Random variables with independent binary digits”, Ann. Math. Statist., 42:2 (1971), 1922-–1929

[17] Y. Peres, W. Schlag, B. Solomyak, “Sixty years of Bernoulli convolutions”, Fractal Geometry and Stochastics II, Progr. Probab., 46, Birkhäuser, Basel, 2000, 39-–65

[18] Y. Peres, B. Solomyak, “Absolute continuity of Bernoulli convolutions, a simple proof”, Math. Res. Lett., 3:2 (1996), 231-–239

[19] M. V. Pratsiovytyi, “Distributions of sums of random power series”, Dopov.Nats. Akad. Nauk Ukra$\ddot{\imath}$ni, 1996, no. 5, 32-–37

[20] M. V. Pratsiovytyi, Fractal Approach to Investigations of Singular Probability Distributions, Dragomanov National Pedagogical University, Kyiv, 1998

[21] M. V. Pratsiovytyi, G. M. Torbin, “Fractal geometry and transformations preserving the Hausdorff-Besicovitch dimension”, Dynamical systems: Proceedings of the Ukrainian Mathematical Congress–2001, Institute for Mathematics of NAS of Ukraine, Kyiv, 2003, 77-–93

[22] J. I. Reich, “Some results on distributions arising from coin tossing”, Ann. Probab., 10:3 (1982), 780-–786

[23] J. I. Reich, “When do wieghted sums of independent random variables have a density—some results and examples”, Ann. Probab., 10:3 (1982), 787-–798

[24] R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427-–439

[25] B. Solomyak, “On the random series $\sum\pm\lambda^n$ (an Erdös problem)”, Ann. of Math. (2), 142:3 (1995), 611-–625

[26] T. Šalát, “Hausdorff measure of linear sets”, Czechoslovak Math. J., 86:11 (1961), 24-–56

[27] A. F. Turbin, M. V. Pratsiovytyi, Fractal Sets, Functions, and Probability Distributions, Naukova Dumka, Kyiv, 1992