Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_2_a2, author = {S. Yu. Novak}, title = {Measures of financial risks and}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {182--193}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a2/} }
S. Yu. Novak. Measures of financial risks and. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 182-193. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a2/
[1] E. Capobianco, “Multiresolution approximation for volatility processes”, Quant. Finance, 2:2 (2002), 91–110
[2] B. Basrak, R. A. Davis, T. Mikosch, “Regular variation of GARCH processes”, Stochastic Process. Appl., 99:1 (2002), 95–115
[3] J. Danielsson, C. de Vries, L. de Haan, L. Peng, “Using a bootstrap method to choose the sample fraction in tail index estimation”, J.Multivar Anal., 76:2 (2001), 226–248
[4] Z. Ding, C. W. J. Granger, R. F. Engle, “A long memory property of stock market returns and a new model”, J. Empir. Finance, 1 (1993), 83–106
[5] H. Drees, “Extreme quantile estimation for dependent data, with applications to finance”, Bernoulli, 9:4 (2003), 617–657
[6] P. Embrechts, C. Klüppelberg,T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer Verlag, Berlin, 1997
[7] E. F. Fama, R. Roll, “Some properties of symmetric stable distributions”, J. American Statist. Assoc., 63 (1968), 817–836
[8] C. M. Goldie, “Implicit renewal theory and tails of solutions of random equations”, Ann. Appl. Probab., 1 (1991), 126–166
[9] C. M. Goldie, R. L. Smith, “Slow variation with remainder: theory and applications”, Quart. J. Math. Oxford, 38 (1987), 45–71
[10] T. S. Y. Ho, S. B. Lee, The Oxford guide to financial modeling, Oxford University Press, New York, 2004
[11] P. Jorion, Value-at-Risk, McGraw-Hill, 2001
[12] D. G. Luenberger, Investment Science, Oxford University Press, 1998
[13] B. B. Mandelbrot, “New methods in statistical economics”, J. Political Economy, 71 (1963), 421–440
[14] G. Matthys, J. Beirlant, Extreme quantile estimation for heavy-tailed distributions, Preprint Universitair Centrum voor Statistiek, Katholieke Universiteit Leuven, 2001
[15] G. Matthys, G. Delafrosse, J. Beirlant, “Estimating catostrophic quantile levels for heavy-tails distributions”, Insurance Math. Economics, 34 (2004), 517–537
[16] A. J. McNeil, “Estimating the tails of loss severity distributions using extreme value theory”, Astin Bull., 27:1 (1997), 117–137
[17] A. J. McNeil, “On extremes and crashes”, Risk, 11 (1998), 99–104
[18] Mikosch, Non-life insurance mathemaics, Springer Verlag, Berlin, 2004
[19] S. Y. Novak, “Inference on heavy tails from dependent data”, Siberian Adv. Math., 12:2 (2002), 73–96
[20] S. Y. Novak, Advances in Extreme Value Theory, MUBS Discussion Paper No 28, series Accounting Finance, Middlesex University, London, 2005
[21] S. Y. Novak, J. Beirlant, “The magnitude of a market crash can be predicted”, J. Banking Finance, 30 (2006), 453–462
[22] C. S. Tapiero, Risk and financial management, Wiley, Chichester, 2004
[23] S. I. Resnick, “Heavy tail modeling and teletrafic data”, Ann. Statist., 25:5 (1997), 1805–1869
[24] Y. Yamai, T. Yoshiba, “Comparative analyses of Expected Shortfall and Value-at-Risk: their estimation, decomposition, and optimization”, Monetary Econom. Studies, 2002, 87-22