Measures of financial risks and
Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 182-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of particular importance in financial risk management is forecasting the magnitude of a market crash. We address this problem using statistical inference on heavy tailed distributions. Our approach involves accurate estimates of the tail index, extreme quantiles, and the mean excess function. We apply our approach to real financial data, and argue that the September 2001 crash had two components: one (systematic) could be predicted, while another (non systematic) was due to the shock of the event. We present empirical evidence that the degree of tail heaviness can change considerably as one switches to less frequent data. This fact has important implications to the problem of estimating financial risks.
Keywords: Heavy-tailed distribution, Value-at-Risk, Expected Shortfall.
@article{THSP_2007_13_2_a2,
     author = {S. Yu. Novak},
     title = {Measures of financial risks and},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {182--193},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a2/}
}
TY  - JOUR
AU  - S. Yu. Novak
TI  - Measures of financial risks and
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 182
EP  - 193
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a2/
LA  - en
ID  - THSP_2007_13_2_a2
ER  - 
%0 Journal Article
%A S. Yu. Novak
%T Measures of financial risks and
%J Teoriâ slučajnyh processov
%D 2007
%P 182-193
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a2/
%G en
%F THSP_2007_13_2_a2
S. Yu. Novak. Measures of financial risks and. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 182-193. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a2/

[1] E. Capobianco, “Multiresolution approximation for volatility processes”, Quant. Finance, 2:2 (2002), 91–110

[2] B. Basrak, R. A. Davis, T. Mikosch, “Regular variation of GARCH processes”, Stochastic Process. Appl., 99:1 (2002), 95–115

[3] J. Danielsson, C. de Vries, L. de Haan, L. Peng, “Using a bootstrap method to choose the sample fraction in tail index estimation”, J.Multivar Anal., 76:2 (2001), 226–248

[4] Z. Ding, C. W. J. Granger, R. F. Engle, “A long memory property of stock market returns and a new model”, J. Empir. Finance, 1 (1993), 83–106

[5] H. Drees, “Extreme quantile estimation for dependent data, with applications to finance”, Bernoulli, 9:4 (2003), 617–657

[6] P. Embrechts, C. Klüppelberg,T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer Verlag, Berlin, 1997

[7] E. F. Fama, R. Roll, “Some properties of symmetric stable distributions”, J. American Statist. Assoc., 63 (1968), 817–836

[8] C. M. Goldie, “Implicit renewal theory and tails of solutions of random equations”, Ann. Appl. Probab., 1 (1991), 126–166

[9] C. M. Goldie, R. L. Smith, “Slow variation with remainder: theory and applications”, Quart. J. Math. Oxford, 38 (1987), 45–71

[10] T. S. Y. Ho, S. B. Lee, The Oxford guide to financial modeling, Oxford University Press, New York, 2004

[11] P. Jorion, Value-at-Risk, McGraw-Hill, 2001

[12] D. G. Luenberger, Investment Science, Oxford University Press, 1998

[13] B. B. Mandelbrot, “New methods in statistical economics”, J. Political Economy, 71 (1963), 421–440

[14] G. Matthys, J. Beirlant, Extreme quantile estimation for heavy-tailed distributions, Preprint Universitair Centrum voor Statistiek, Katholieke Universiteit Leuven, 2001

[15] G. Matthys, G. Delafrosse, J. Beirlant, “Estimating catostrophic quantile levels for heavy-tails distributions”, Insurance Math. Economics, 34 (2004), 517–537

[16] A. J. McNeil, “Estimating the tails of loss severity distributions using extreme value theory”, Astin Bull., 27:1 (1997), 117–137

[17] A. J. McNeil, “On extremes and crashes”, Risk, 11 (1998), 99–104

[18] Mikosch, Non-life insurance mathemaics, Springer Verlag, Berlin, 2004

[19] S. Y. Novak, “Inference on heavy tails from dependent data”, Siberian Adv. Math., 12:2 (2002), 73–96

[20] S. Y. Novak, Advances in Extreme Value Theory, MUBS Discussion Paper No 28, series Accounting Finance, Middlesex University, London, 2005

[21] S. Y. Novak, J. Beirlant, “The magnitude of a market crash can be predicted”, J. Banking Finance, 30 (2006), 453–462

[22] C. S. Tapiero, Risk and financial management, Wiley, Chichester, 2004

[23] S. I. Resnick, “Heavy tail modeling and teletrafic data”, Ann. Statist., 25:5 (1997), 1805–1869

[24] Y. Yamai, T. Yoshiba, “Comparative analyses of Expected Shortfall and Value-at-Risk: their estimation, decomposition, and optimization”, Monetary Econom. Studies, 2002, 87-22