Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_2_a12, author = {Alexander Veretennikov}, title = {On asymptotic information integral}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {294--307}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a12/} }
Alexander Veretennikov. On asymptotic information integral. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 294-307. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a12/
[1] B. Z. Bobrovsky, M. Zakai, “A lower bound on the estimation error for certain diffusion processes”, IEEE Trans. Inform. Theory., IT-22 (1976), 45-–52
[2] A. A. Borovkov, Mathematical statistics, Gordon and Breach Science Publishers, Amsterdam, 1998
[3] A. A. Borovkov, A. I. Sakhanenko, “Estimates for averaged quadratic risk”, Probab. Math. Statist., 1:2 (1980), 185–195 (Russian)
[4] W. Feller, An introduction to probability theory and its applications, v. 2, John Wiley Sons, New York-London-Sydney, 1966
[5] R. D. Gill, B. Y. Levit, “Applications of the Van Trees inequality: a Bayesian Cramér-Rao bound”, Bernoulli, 1:1-2 (1995), 59–79
[6] I. A. Ibragimov, R. Z. Hasminskii, Statistical estimation. Asymptotic theory, Springer, New York - Berlin, 1981
[7] A. V. Nazin, Information approach to optimization problems and adaptive control of discrete stochastic systems, DrSc Thesis, Inst. Control Sci., Moscow, 1995
[8] B. L. Prakasa Rao, “On Cramér-Rao type integral inequalities”, Calcutta Statist. Assoc. Bull., 40:157-160 (1990/91), 183-–205
[9] M. P. Schützenberger, “A generalization of the Frechet–Cramér inequality to the case of Bayes estimation”, Bull. Amer. Math. Soc., 63:142 (1957)
[10] M. P. Schützenberger, “A propos de l’inégalité de Fréchet-–Cramér”, Publ. Inst. Statist. Univ. Paris, 7:3/4 (1958), 3-–6
[11] Teor. Veroyatn. Primen., 32(3) (1987), 469-–477
[12] H. Van Trees, Detection, Estimation and Modulation Theory, v. I, Wiley, New York, 1968
[13] A. Yu. Veretennikov, Parametric and non-parametric estimation for Markov chains, Lecture notes, Publ. Centre Appl. Research, Mech. Math. Faculty, Moscow State Univ., Moscow, 2000
[14] A. J. Weiss, E. Weinstein, “A lower bound on the mean-square error in random parameter estimation”, IEEE Trans. Inf. Theory, 31 (1985), 680–-682