On asymptotic information integral
Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 294-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotical versions of Bayesian Cramér-–Rao inequalities are discussed.
Keywords: Cramér-–Rao inequality, integral asymptotic case.
@article{THSP_2007_13_2_a12,
     author = {Alexander Veretennikov},
     title = {On asymptotic information integral},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {294--307},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a12/}
}
TY  - JOUR
AU  - Alexander Veretennikov
TI  - On asymptotic information integral
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 294
EP  - 307
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a12/
LA  - en
ID  - THSP_2007_13_2_a12
ER  - 
%0 Journal Article
%A Alexander Veretennikov
%T On asymptotic information integral
%J Teoriâ slučajnyh processov
%D 2007
%P 294-307
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a12/
%G en
%F THSP_2007_13_2_a12
Alexander Veretennikov. On asymptotic information integral. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 294-307. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a12/

[1] B. Z. Bobrovsky, M. Zakai, “A lower bound on the estimation error for certain diffusion processes”, IEEE Trans. Inform. Theory., IT-22 (1976), 45-–52

[2] A. A. Borovkov, Mathematical statistics, Gordon and Breach Science Publishers, Amsterdam, 1998

[3] A. A. Borovkov, A. I. Sakhanenko, “Estimates for averaged quadratic risk”, Probab. Math. Statist., 1:2 (1980), 185–195 (Russian)

[4] W. Feller, An introduction to probability theory and its applications, v. 2, John Wiley Sons, New York-London-Sydney, 1966

[5] R. D. Gill, B. Y. Levit, “Applications of the Van Trees inequality: a Bayesian Cramér-Rao bound”, Bernoulli, 1:1-2 (1995), 59–79

[6] I. A. Ibragimov, R. Z. Hasminskii, Statistical estimation. Asymptotic theory, Springer, New York - Berlin, 1981

[7] A. V. Nazin, Information approach to optimization problems and adaptive control of discrete stochastic systems, DrSc Thesis, Inst. Control Sci., Moscow, 1995

[8] B. L. Prakasa Rao, “On Cramér-Rao type integral inequalities”, Calcutta Statist. Assoc. Bull., 40:157-160 (1990/91), 183-–205

[9] M. P. Schützenberger, “A generalization of the Frechet–Cramér inequality to the case of Bayes estimation”, Bull. Amer. Math. Soc., 63:142 (1957)

[10] M. P. Schützenberger, “A propos de l’inégalité de Fréchet-–Cramér”, Publ. Inst. Statist. Univ. Paris, 7:3/4 (1958), 3-–6

[11] Teor. Veroyatn. Primen., 32(3) (1987), 469-–477

[12] H. Van Trees, Detection, Estimation and Modulation Theory, v. I, Wiley, New York, 1968

[13] A. Yu. Veretennikov, Parametric and non-parametric estimation for Markov chains, Lecture notes, Publ. Centre Appl. Research, Mech. Math. Faculty, Moscow State Univ., Moscow, 2000

[14] A. J. Weiss, E. Weinstein, “A lower bound on the mean-square error in random parameter estimation”, IEEE Trans. Inf. Theory, 31 (1985), 680–-682