Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_2_a1, author = {Mikhail Moklyachuk and Aleksandr Masyutka}, title = {Robust filtering of stochastic}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {166--181}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a1/} }
Mikhail Moklyachuk; Aleksandr Masyutka. Robust filtering of stochastic. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 166-181. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a1/
[1] J. Franke, “On the robust prediction and interpolation of time series in the presence of correlated noise”, J. Time Series Analysis, 5:4 (1984), 227–244
[2] J. Franke, “Minimax robust prediction of discrete time series”, Z.Wahrsch. Verw. Gebiete., 68 (1985), 337–364
[3] J. Franke, H. V. Poor, “Minimax robust filtering and finitelength robust predictors”, Robust and Nonlinear Time Series Analysis (Heidelberg, 1983), Lecture Notes in Statistics, 26, Springer-Verlag, 1984, 87–126
[4] J. Franke, “A general version of Breiman minimax filter”, Note di Matematica, 11 (1991), 157–175
[5] U. Grenander, “A prediction problem in game theory”, Ark.Mat., 3 (1957), 371–379
[6] T. Kailath, “A view of three decades of linear filtering theory”, IEEE Trans. on Inform. Theory, 20:2 (1974), 146–181
[7] S. A. Kassam, H. V. Poor, “Robust techniques for signal processing: A survey”, Proc. IEEE, 73:3 (1985), 433–481
[8] A. N. Kolmogorov, Selected works of A. N. Kolmogorov, v. II, Mathematics and Its Applications. Soviet Series, 26., Probability theory and mathematical statistics, ed. A. N. Shiryayev, Kluwer Academic Publishers, Dordrecht etc., 1992
[9] M. P. Moklyachuk, “Stochastic autoregressive sequence and minimax interpolation”, Theor. Probab. and Math. Stat., 48 (1994), 95–103
[10] M. P. Moklyachuk, “Estimates of stochastic processes from observations with noise”, Theory Stoch. Process., 3(19):3-4 (1997), 330–338
[11] M. P. Moklyachuk, “Extrapolation of stationary sequences from observations with noise”, Theor. Probab. and Math. Stat., 57 (1998), 133–141
[12] M. P. Moklyachuk, “Robust procedures in time series analysis”, Theory Stoch. Process., 6(22):3-4 (2000), 127–147
[13] M. P. Moklyachuk, “Game theory and convex optimization methods in robust estimation problems”, Theory Stoch. Process., 7(23):1-2 (2001), 253–264
[14] M. P. Moklyachuk, A. Yu. Masyutka, “Interpolation of vector-valued stationary sequences”, Theor. Probab. and Math. Stat., 73 (2005), 112–119
[15] M. P. Moklyachuk, A. Yu. Masyutka, “Extrapolation of vector-valued stationary sequences”, Visn., Ser. Fiz.-Mat. Nauky, Kyiv. Univ. Im. Tarasa Shevchenka, 3 (2005), 60–70
[16] M. P. Moklyachuk, A. Yu. Masyutka, “Extrapolation of multidimensional stationary processes”, Random Oper. and Stoch. Equ., 14 (2006), 233–244
[17] B. N. Pshenichnyi, Necessary conditions for an extremum, 2nd ed., Nauka, Moscow, 1982
[18] Holden-Day, San Francisco, 1967
[19] K. S. Vastola, H. V. Poor, “An analysis of the e?ects of spectral uncertainty on Wiener filtering”, Automatica, 28 (1983), 289–293
[20] N. Wiener, Extrapolation, interpolation, and smoothing of stationary time series. With engineering applications, The M. I. T. Press, Massachusetts Institute of Technology, Cambridge, Mass., 1966
[21] A. M. Yaglom, Correlation theory of stationary and related random functions, v. I, Springer Series in Statistics, Basic results, Springer-Verlag, New York etc., 1987
[22] A. M. Yaglom, Correlation theory of stationary and related random functions, v. II, Springer Series in Statistics, Supplementary notes and references, Springer-Verlag, New York etc., 1987