Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_2_a0, author = {Yulia Mishura and Sergiy Posashkov}, title = {Existence and uniqueness of solution}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {152--165}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a0/} }
Yulia Mishura; Sergiy Posashkov. Existence and uniqueness of solution. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 152-165. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a0/
[1] D. Nualart, Răşcanu, “Differential equations driven by fractional Brownian motion”, Collect. Math., 53 (2000), 55–81
[2] P. Cheridito Regularizing fractional Brownian motion with a view towards stock price modeling, PhD thesis, Zurich, 2001
[3] Yu. Mishura, S. Posashkov, “Existence and uniqueness of solution of stochastic differential equation driven by fractional Brownian motion with stabilizing term”, Theory Prob. Math. Stat., 76 (2007)
[4] M. Zähle, “On the link between fractional and stochastic calculcus”, Stochastic Dynamics, eds. Grauel, H., Gundlach, M., Springer, 1999, 305–325
[5] M. Zähle, “Integration with respect to fractal functions and stochastic calculus. I”, Probab. Theory Rel. Fields, 111 (1998), 333–374
[6] M. Zähle Integraton with respect to fractal functions and stochastic calculus. II, Math. Nachr., 225 (2001), 145–183
[7] Yu. Krvavych, Yu. Mishura, “Exponential formula and Girsanov theorem for mixed semilinear stochastic differential equatios”, Mathematical Finance (Trends in Mathematics), Basel, Birkhäuser, 2001, 230–239
[8] M. Hitsuda, “Representation of Gaussian processes equivalent to Wiener process”, Osaka Journal of Mathematics, 5 (1968), 299–312