Remark on optimal investment in a
Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 66-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a financial market model driven by a Gaussian semi-martingale with stationary increments. This driving noise process consists of $n$ independent components and each component has memory described by two parameters. We extend results of the authors on optimal investment in this market.
Keywords: Optimal investment, long term investment, processes with memory, processes with stationary increments
Mots-clés : Riccati equations.
@article{THSP_2007_13_1_a6,
     author = {Akihiko Inoue and Yumiharu Nakano},
     title = {Remark on optimal investment in a},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {66--76},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a6/}
}
TY  - JOUR
AU  - Akihiko Inoue
AU  - Yumiharu Nakano
TI  - Remark on optimal investment in a
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 66
EP  - 76
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a6/
LA  - en
ID  - THSP_2007_13_1_a6
ER  - 
%0 Journal Article
%A Akihiko Inoue
%A Yumiharu Nakano
%T Remark on optimal investment in a
%J Teoriâ slučajnyh processov
%D 2007
%P 66-76
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a6/
%G en
%F THSP_2007_13_1_a6
Akihiko Inoue; Yumiharu Nakano. Remark on optimal investment in a. Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 66-76. http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a6/

[1] V. Anh, A. Inoue, “Financial markets with memory I: Dynamic models”, Stoch. Anal. Appl., 23 (2005), 275-–300

[2] V. Anh, A. Inoue, Y. Kasahara, “Financial markets with memory II: Innovation processes and expected utility maximization”, Stoch. Anal. Appl., 23 (2005), 301-–328

[3] O. E. Barndorff-Nielsen, N. Shephard, “Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics”, J. Roy. Statist. Soc. Ser. B, 63 (2001), 167-–241

[4] T. R. Bielecki, S. R. Pliska, “Risk sensitive dynamic asset management”, Appl. Math. Optim., 39 (1999), 337-–360

[5] W. H. Fleming, S. J. Sheu, “Risk-sensitive control and an optimal investment model”, Math. Finance, 10 (2000), 197-–213

[6] W. H. Fleming, S. J. Sheu, “Risk-sensitive control and an optimal investment model (II)”, Ann. Appl. Probab., 12 (2000), 730-–767

[7] H. Hata, Y. Iida, “A risk-sensitive stochastic control approach to an optimal investment problem with partial information”, Finance Stoch., 10 (2006), 395-–426

[8] H. Hata, J. Sekine, “Solving long term optimal investment problems with Cox-Ingersoll-Ross interest rates”, Adv. Math. Econ., 8 (2006), 231-–255

[9] H. Hata, J. Sekine, Solving a large deviations control problem with a nonlinear factor model, preprint

[10] C. C. Heyde, N. N. Leonenko, “Student processes”, Adv. in Appl. Probab., 37 (2005), 342-–365

[11] Y. Hu,B. Oksendal,A. Sulem, “Optimal consumption and portfolio in a Black-Scholes market driven by fractional Brownian motion”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6 (2003), 519-–536

[12] A. Inoue, Y. Nakano, “Optimal long term investment model with memory”, Appl. Math. Optim. (to appear)

[13] A. Inoue, Y. Nakano, V. Anh, “Linear ?ltering of systems with memory and application to finance”, J. Appl.Math. Stoch. Anal., 2006, 1-–26

[14] I. Karatzas, S. E. Shreve, Methods of mathematical finance, Springer-Verlag, New York, 1998

[15] Yu. Mishura, “Fractional stochastic integration and Black–Scholes equation for fractional Brownian motion model with stochastic volatility”, Stoch. Stoch. Rep., 76 (2004), 363-–381

[16] H. Nagai, S. Peng,, “Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon”, Ann. Appl. Probab., 12 (2002), 173-–195

[17] H. Pham, “A large deviations approach to optimal long term investment”, Finance Stoch., 7 (2003), 169-–195

[18] H. Pham, “A risk-sensitive control dual approach to a large deviations control problem”, Systems Control Lett., 49 (2003), 295-–309