Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_1_a6, author = {Akihiko Inoue and Yumiharu Nakano}, title = {Remark on optimal investment in a}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {66--76}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a6/} }
Akihiko Inoue; Yumiharu Nakano. Remark on optimal investment in a. Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 66-76. http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a6/
[1] V. Anh, A. Inoue, “Financial markets with memory I: Dynamic models”, Stoch. Anal. Appl., 23 (2005), 275-–300
[2] V. Anh, A. Inoue, Y. Kasahara, “Financial markets with memory II: Innovation processes and expected utility maximization”, Stoch. Anal. Appl., 23 (2005), 301-–328
[3] O. E. Barndorff-Nielsen, N. Shephard, “Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics”, J. Roy. Statist. Soc. Ser. B, 63 (2001), 167-–241
[4] T. R. Bielecki, S. R. Pliska, “Risk sensitive dynamic asset management”, Appl. Math. Optim., 39 (1999), 337-–360
[5] W. H. Fleming, S. J. Sheu, “Risk-sensitive control and an optimal investment model”, Math. Finance, 10 (2000), 197-–213
[6] W. H. Fleming, S. J. Sheu, “Risk-sensitive control and an optimal investment model (II)”, Ann. Appl. Probab., 12 (2000), 730-–767
[7] H. Hata, Y. Iida, “A risk-sensitive stochastic control approach to an optimal investment problem with partial information”, Finance Stoch., 10 (2006), 395-–426
[8] H. Hata, J. Sekine, “Solving long term optimal investment problems with Cox-Ingersoll-Ross interest rates”, Adv. Math. Econ., 8 (2006), 231-–255
[9] H. Hata, J. Sekine, Solving a large deviations control problem with a nonlinear factor model, preprint
[10] C. C. Heyde, N. N. Leonenko, “Student processes”, Adv. in Appl. Probab., 37 (2005), 342-–365
[11] Y. Hu,B. Oksendal,A. Sulem, “Optimal consumption and portfolio in a Black-Scholes market driven by fractional Brownian motion”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6 (2003), 519-–536
[12] A. Inoue, Y. Nakano, “Optimal long term investment model with memory”, Appl. Math. Optim. (to appear)
[13] A. Inoue, Y. Nakano, V. Anh, “Linear ?ltering of systems with memory and application to finance”, J. Appl.Math. Stoch. Anal., 2006, 1-–26
[14] I. Karatzas, S. E. Shreve, Methods of mathematical finance, Springer-Verlag, New York, 1998
[15] Yu. Mishura, “Fractional stochastic integration and Black–Scholes equation for fractional Brownian motion model with stochastic volatility”, Stoch. Stoch. Rep., 76 (2004), 363-–381
[16] H. Nagai, S. Peng,, “Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon”, Ann. Appl. Probab., 12 (2002), 173-–195
[17] H. Pham, “A large deviations approach to optimal long term investment”, Finance Stoch., 7 (2003), 169-–195
[18] H. Pham, “A risk-sensitive control dual approach to a large deviations control problem”, Systems Control Lett., 49 (2003), 295-–309