Simex estimator for polynomial
Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 57-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

For polynomial errors-in-variables model, the Simex estimator is constructed in such way that it is consistent, as the samples size grows and the size of auxiliary sample is fixed. Then the estimator is modified in such a way that it shows good results for small samples without losing its asymptotic properties for large samples. Simulation studies corroborate the theoretical findings.
Keywords: Simex estimator, errors-in-variables models, Hermite polynomials.
@article{THSP_2007_13_1_a5,
     author = {Olena Gontar and Andrii Malenko},
     title = {Simex estimator for polynomial},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {57--65},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a5/}
}
TY  - JOUR
AU  - Olena Gontar
AU  - Andrii Malenko
TI  - Simex estimator for polynomial
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 57
EP  - 65
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a5/
LA  - en
ID  - THSP_2007_13_1_a5
ER  - 
%0 Journal Article
%A Olena Gontar
%A Andrii Malenko
%T Simex estimator for polynomial
%J Teoriâ slučajnyh processov
%D 2007
%P 57-65
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a5/
%G en
%F THSP_2007_13_1_a5
Olena Gontar; Andrii Malenko. Simex estimator for polynomial. Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 57-65. http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a5/

[1] C.-L. Cheng, H. Schneeweiss, “Polynomial regression with errors in the variables”, J.R. Statist. Soc. B, 60 (1998), 189–199

[2] C.-L. Cheng, H. Schneeweiss, M. Thamerus, “A small sample estimator for a polynomial regression with errors in the variables”, J.R. Statist. B, 62 (2000), 699–709

[3] J. Cook, L. A. Stefanski, “A simulation extrapolation method for parametric measurement error models”, Journal of the American Statistical Association, 89 (1995), 1314–1328

[4] T. Nakamura, “Corrected Score functions for errors-in-variables models: methodology and application to generalized linear models”, Biometrika, 77 (1990), 127–137

[5] J. Polzehl, S. Zwanzig, Simex and TLS: an equivalence result, WIAS, Technical Report 999, Berlin, 2005

[6] L. A. Stefanski, “Unbiased estimation of a nonlinear function of a normal mean with application to measurement error model”, Computation in Statistics, Series A, 18 (1989), 4335–4358