Precise asymptotics over a small
Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 44-56

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the asymptotics of the series $$ \sum^\infty_{k=1}w_k({\mathbf P}(|S_k|\geq\varepsilon_k) $$are par as $\varepsilon\downarrow0,$ where $S_k$ tial sums of independent and identically distributed random variables in the domain of attraction of a non-degenerate stable law, $w$ and $\varepsilon$ are regularly varying functions (in Karamata’s sense).
Keywords: Spitzer series, large deviations, stable laws, regularly varying functions.
@article{THSP_2007_13_1_a4,
     author = {V. V. Buldygin and O. I. Klesov and J. G. Steinebach},
     title = {Precise asymptotics over a small},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {44--56},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a4/}
}
TY  - JOUR
AU  - V. V. Buldygin
AU  - O. I. Klesov
AU  - J. G. Steinebach
TI  - Precise asymptotics over a small
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 44
EP  - 56
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a4/
LA  - en
ID  - THSP_2007_13_1_a4
ER  - 
%0 Journal Article
%A V. V. Buldygin
%A O. I. Klesov
%A J. G. Steinebach
%T Precise asymptotics over a small
%J Teoriâ slučajnyh processov
%D 2007
%P 44-56
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a4/
%G en
%F THSP_2007_13_1_a4
V. V. Buldygin; O. I. Klesov; J. G. Steinebach. Precise asymptotics over a small. Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 44-56. http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a4/