Precise asymptotics over a small
Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 44-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the asymptotics of the series $$ \sum^\infty_{k=1}w_k({\mathbf P}(|S_k|\geq\varepsilon_k) $$are par as $\varepsilon\downarrow0,$ where $S_k$ tial sums of independent and identically distributed random variables in the domain of attraction of a non-degenerate stable law, $w$ and $\varepsilon$ are regularly varying functions (in Karamata’s sense).
Keywords: Spitzer series, large deviations, stable laws, regularly varying functions.
@article{THSP_2007_13_1_a4,
     author = {V. V. Buldygin and O. I. Klesov and J. G. Steinebach},
     title = {Precise asymptotics over a small},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {44--56},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a4/}
}
TY  - JOUR
AU  - V. V. Buldygin
AU  - O. I. Klesov
AU  - J. G. Steinebach
TI  - Precise asymptotics over a small
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 44
EP  - 56
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a4/
LA  - en
ID  - THSP_2007_13_1_a4
ER  - 
%0 Journal Article
%A V. V. Buldygin
%A O. I. Klesov
%A J. G. Steinebach
%T Precise asymptotics over a small
%J Teoriâ slučajnyh processov
%D 2007
%P 44-56
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a4/
%G en
%F THSP_2007_13_1_a4
V. V. Buldygin; O. I. Klesov; J. G. Steinebach. Precise asymptotics over a small. Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 44-56. http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a4/

[1] S. Aljanĉić, R. Bojanić, M. Tomić, “Sur la valeur asymptotique d’une classe des intégrales definies”, Publ. Inst. Math. Acad. Serbe Sci., 7 (1954), 81-–94

[2] B. von Bahr, C.-G. Esseen, “Inequalities for the $r$-th absolute moment of a sum of random variables, $1\leq r\leq 2$”, Ann. Math. Statist., 36 (1965), 299-–303

[3] L. E. Baum, M. Katz, “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120 (1965), 108-–125

[4] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Cambridge University Press, Cambridge, 1987

[5] R. Chen, “A remark on the tail probability of a distribution”, J.Multivariate Analysis, 8 (1978), 328-–333

[6] Y. S. Chow, T. L. Lai, “Paley-type inequalities and convergence rates related to the law of large numbers and extended renewal theory”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 45 (1978), 1-–19

[7] Y. S. Chow, H. Teicher, Probability theory, Springer-Verlag, New York–Heidelberg–Berlin, 1978

[8] P. Erdös, “On a theorem of Hsu and Robbins”, Ann. Math. Statist., 20 (1949), 286-–291; Remark on my “On a theorem of Hsu and Robbins”, Ann. Math. Statist., 21 (1950)

[9] W. Feller, An introduction to probability theory and its applications, Wiley, New York–London–Sydney–Toronto, 1971

[10] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley, Cambridge, Massachussetts, 1954

[11] A. Gut, A. Spătaru, “Precise asymptotics in the Baum–Katz and Davis laws of large numbers”, J. Math. Anal. Appl., 248 (2000), 233–246

[12] A. Gut, J. Steinebach, “Convergence rates and precise asymptotics for renewal counting processes and some first passage times”, Fields Inst. Comm., 44 (2004), 205-–227

[13] P. Hall, “A comedy of errors: the canonical form for a stable characteristic function”, Bull. London Math. Soc., 13 (1981), 23-–27

[14] C. C. Heyde, “A supplement to the strong law of large numbers”, J. Appl. Probab., 12 (1975), 173-–175

[15] C. C. Heyde, “On large deviation probabilities in the case of attraction to a non-normal stable law”, Sankhya, A30 (1968), 253-–258

[16] C. C. Heyde, V. K. Rohatgi, “A pair of complimentary theorems on convergence rates in the law of large numbers”, Proc. Camb. Phil. Soc., 63 (1967), 73-–82

[17] P. L. Hsu, H. Robbins, “Complete convergence and the law of large numbers”, Proc. Nat. Acad. Sci. U.S.A., 33 (1947), 25-–31

[18] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff, Groeningen, 1971

[19] J. Karamata, “Sur un mode de croissance régulière. Théorèmes fondamentaux”, Bull. Soc. Math. France, 61 (1933), 55-–62

[20] M. Katz, “The probability in the tail of a distribution”, Ann. Math. Statist., 34 (1963), 312-–318

[21] S. Parameswaran, “Partition functions whose logarithms are slowly oscillating”, Trans. Amer. Math. Soc., 100 (1961), 217-–240

[22] L. V. Rozovski\u{ i}, “On precise asymptotics in the weak law of large numbers for sums of independent random variables with a common distribution function from the domain of attraction of a stable law”, Theory Probab. Appl., 48 (2004), 561-–568

[23] H.-P. Scheffler, “Precise asymptotics in Spitzer and Baum–Katz’s law of large numbers: the semistable case”, J. Math. Anal. Appl., 288 (2003), 285-–298

[24] E. Seneta, Regularly varying functions, Springer-Verlag, Berlin–Heidelberg–New York, 1976

[25] A. Spătaru, “Precise asymptotics in Spitzer’s law of large numbers”, J. Theor. Probab., 12 (1999), 811-–819

[26] F. Spitzer, “A combinatorial lemma and its applications to probability theory”, Trans. Amer. Math. Soc., 82 (1956), 323-–339

[27] V. M. Zolotarev, One-dimensional stable distributions, American Mathematical Society, Providence, R.I., 1986