Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_1_a2, author = {Christian Bender and Tommi Sottinen and Esko Valkeila}, title = {Arbitrage with fractional brownian}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {23--34}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a2/} }
Christian Bender; Tommi Sottinen; Esko Valkeila. Arbitrage with fractional brownian. Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a2/
[1] T. Androshchuk,Yu. Mishura, Mixed Brownian – fractional Brownian model: absence of arbitrage and related topics, Preprint, 2005
[2] C. Bender, “An $S$-transform approach to integration with respect to a fractional Brownian motion”, Bernoulli, 9 (2003), 955–983
[3] C. Bender, Integration with respect to a fractional Brownian motion and related market models thesisinfo PhD thesis, Hartung-Gorre Scientific Publisher, Konstanz, 2003, 174 pp.
[4] C. Bender, R. J. Elliott, “Arbitrage in a discrete version of the Wick- fractional Black-Scholes market”, Math. Oper. Res., 29 (2004), 935–945
[5] C. Bender, T. Sottinen, E. Valkeila, Pricing by hedging and absence of regular arbitrage beyond semimartingales, Preprint, 2006
[6] T. Björk, H. Hult, “A note on Wick products and the fractional Black- Scholes model”, Finance and Stochastics, 9 (2005), 197–209
[7] P. Cheridito, “Mixed fractional Brownian motion”, Bernoulli, 7 (2001), 913–934
[8] P. Cheriditio, “Arbitrage in fractional Brownian motion models”, Finance and Stochastics, 7 (2003), 533–553
[9] F. Delbaen, W. Schachermayer, “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300 (1994), 463–520
[10] A. Dasgupta, G. Kallianpur, “Arbitrage opportunities for a class of Gladyshev processes”, Appl. Math. Opt., 41 (2000), 377–385
[11] T. Duncan, Y. Hu, B. Pasik-Duncan, “Stochastic calculus for fractional Brownian motion”, SIAM J. Contr. Optim., 38 (2000), 582–612
[12] R. Elliott, J. van der Hoek, “A general fractional white noise theory and applications to finance”, Math. Finance, 13 (2003), 301–330
[13] H. Föllmer, “Calcul d’Itô sans probabilités”, Séminaire de Probabilités, XV, Springer, Berlin, 1981, 143–150
[14] P. Guasoni, “No arbitrage under transaction costs, with fractional Brownian motion and beyond”, Math. Finance, 16 (2006), 569–582
[15] Y. Hu, B. Øksendal, “Fractional white noise calculus and applications to finance”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6, 1–32
[16] S. J. Lin, “Stochastic analysis of fractional Brownian motion”, Stochastics Stochastics Rep., 55 (1995), 121–140.
[17] Yu. Mishura, E. Valkeila, “On arbitrage and replication in the fractional Black-Scholes pricing model”, Proc. of the Steklov Inst. of Math., 237 (2002), 215–224
[18] D. Nualart, “Stochastic calculus with respect to the fractional Brownian motion and applications”, Contemporary Mathematics, 336 (2003), 3–39
[19] B. Oksendal, Fractional Brownian motion in finance, Preprint, 2004
[20] L. C. G. Rogers, “Arbitrage with fractional Brownian motion”, Math. Finance, 7 (1997), 95–105
[21] F. Russo, P. Vallois, “Forward, backward and symmetric stochastic integration”, Probab. Theory Related Fields, 97 (1993), 403–421
[22] J. Schoenmakers, P. Kloeden, “Robust option replication for a Black-Scholes model extended with nondeterministic trends”, J. Appl. Math. Stochastic Anal., 12 (1999), 113–120
[23] A. Shiryaev, On arbitrage and replication for fractal models, Research report 20, MaPhySto, Department of Mathematical Sciences, University of Aarhus, 1998
[24] T. Sottinen, “Fractional Brownian motion, random walks and binary market models”, Finance and Stochastics, 5 (2001), 343–355
[25] T. Sottinen, E. Valkeila, “On arbitrage and replication in the fractional Black-Scholes model”, Statistics Decision, 21 (2003), 93–107
[26] M. Zähle, “Long range dependence, no arbitrage and the Black-Scholes formula”, Stoch. Dyn., 2 (2002), 265–280