Asymptotic equivalence of the
Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 103-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain the sufficient conditions of asymptotic equivalence in mean square and with probability one of linear ordinary and stochastic Ito equations in the Hilbert space.
Keywords: asymptotic equivalence.
Mots-clés : Ito equations
@article{THSP_2007_13_1_a10,
     author = {Andriy Krenevych},
     title = {Asymptotic equivalence of the},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {103--109},
     year = {2007},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a10/}
}
TY  - JOUR
AU  - Andriy Krenevych
TI  - Asymptotic equivalence of the
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 103
EP  - 109
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a10/
LA  - en
ID  - THSP_2007_13_1_a10
ER  - 
%0 Journal Article
%A Andriy Krenevych
%T Asymptotic equivalence of the
%J Teoriâ slučajnyh processov
%D 2007
%P 103-109
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a10/
%G en
%F THSP_2007_13_1_a10
Andriy Krenevych. Asymptotic equivalence of the. Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 103-109. http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a10/

[1] A. P. Krenevich, “Asymptotic Equivalence Of the solutions of The quasilinear Stochastic Ito systems”, Bulletin of the University of Kiev.Series: Physics Mathematics, 2006, no. 1, 69-–76 (Ukrainian)

[2] Yu. L. Daletsky, M. G. Kreyn, Stability of the solution of the differential equations in the Banach space, Nauka, Moscow, 1970 (Russian)

[3] A. Ya. Dorogovtsev, Periodical and stationary states of infinite-dimensional determinate and stochastic dynamic systems, Vyscha Shkola, Kiev, 1992 (Russian)

[4] B. P. Demidovich, Mathematical stability theory lectures, Nauka, Moscow, 1967 (Russian)