Asymptotic equivalence of the
Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 103-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the sufficient conditions of asymptotic equivalence in mean square and with probability one of linear ordinary and stochastic Ito equations in the Hilbert space.
Keywords: asymptotic equivalence.
Mots-clés : Ito equations
@article{THSP_2007_13_1_a10,
     author = {Andriy Krenevych},
     title = {Asymptotic equivalence of the},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {103--109},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a10/}
}
TY  - JOUR
AU  - Andriy Krenevych
TI  - Asymptotic equivalence of the
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 103
EP  - 109
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a10/
LA  - en
ID  - THSP_2007_13_1_a10
ER  - 
%0 Journal Article
%A Andriy Krenevych
%T Asymptotic equivalence of the
%J Teoriâ slučajnyh processov
%D 2007
%P 103-109
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a10/
%G en
%F THSP_2007_13_1_a10
Andriy Krenevych. Asymptotic equivalence of the. Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 103-109. http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a10/

[1] A. P. Krenevich, “Asymptotic Equivalence Of the solutions of The quasilinear Stochastic Ito systems”, Bulletin of the University of Kiev.Series: Physics Mathematics, 2006, no. 1, 69-–76 (Ukrainian)

[2] Yu. L. Daletsky, M. G. Kreyn, Stability of the solution of the differential equations in the Banach space, Nauka, Moscow, 1970 (Russian)

[3] A. Ya. Dorogovtsev, Periodical and stationary states of infinite-dimensional determinate and stochastic dynamic systems, Vyscha Shkola, Kiev, 1992 (Russian)

[4] B. P. Demidovich, Mathematical stability theory lectures, Nauka, Moscow, 1967 (Russian)