Symmetries and stability of motions in the Newtonian and the Hookean potentials
Theoretical and applied mechanics, Tome 49 (2022) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A new way of looking at symmetries is proposed, especially regarding their role in the stability of two-body motions in the Newtonian and the Hookean potentials, the two selected by Bertrand's theorem. The role of the number of spatial dimensions is also addressed.
Keywords: classical mechanics, dynamical symmetry, Bertrand's theorem, Kepler problem
@article{TAM_2022_49_1_a4,
     author = {Christian Carimalo},
     title = {Symmetries and stability of motions in the {Newtonian} and the {Hookean} potentials},
     journal = {Theoretical and applied mechanics},
     pages = {61 - 69},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/TAM_2022_49_1_a4/}
}
TY  - JOUR
AU  - Christian Carimalo
TI  - Symmetries and stability of motions in the Newtonian and the Hookean potentials
JO  - Theoretical and applied mechanics
PY  - 2022
SP  - 61 
EP  -  69
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_2022_49_1_a4/
ID  - TAM_2022_49_1_a4
ER  - 
%0 Journal Article
%A Christian Carimalo
%T Symmetries and stability of motions in the Newtonian and the Hookean potentials
%J Theoretical and applied mechanics
%D 2022
%P 61 - 69
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_2022_49_1_a4/
%F TAM_2022_49_1_a4
Christian Carimalo. Symmetries and stability of motions in the Newtonian and the Hookean potentials. Theoretical and applied mechanics, Tome 49 (2022) no. 1. http://geodesic.mathdoc.fr/item/TAM_2022_49_1_a4/