Symmetries and stability of motions in the Newtonian and the Hookean potentials
Theoretical and applied mechanics, Tome 49 (2022) no. 1

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A new way of looking at symmetries is proposed, especially regarding their role in the stability of two-body motions in the Newtonian and the Hookean potentials, the two selected by Bertrand's theorem. The role of the number of spatial dimensions is also addressed.
Keywords: classical mechanics, dynamical symmetry, Bertrand's theorem, Kepler problem
@article{TAM_2022_49_1_a4,
     author = {Christian Carimalo},
     title = {Symmetries and stability of motions in the {Newtonian} and the {Hookean} potentials},
     journal = {Theoretical and applied mechanics},
     pages = {61 - 69},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/TAM_2022_49_1_a4/}
}
TY  - JOUR
AU  - Christian Carimalo
TI  - Symmetries and stability of motions in the Newtonian and the Hookean potentials
JO  - Theoretical and applied mechanics
PY  - 2022
SP  - 61 
EP  -  69
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_2022_49_1_a4/
ID  - TAM_2022_49_1_a4
ER  - 
%0 Journal Article
%A Christian Carimalo
%T Symmetries and stability of motions in the Newtonian and the Hookean potentials
%J Theoretical and applied mechanics
%D 2022
%P 61 - 69
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_2022_49_1_a4/
%F TAM_2022_49_1_a4
Christian Carimalo. Symmetries and stability of motions in the Newtonian and the Hookean potentials. Theoretical and applied mechanics, Tome 49 (2022) no. 1. http://geodesic.mathdoc.fr/item/TAM_2022_49_1_a4/