Tulczyjew's triplet for Lie groups III: Higher order dynamics and reductions for iterated bundles
Theoretical and applied mechanics, Tome 48 (2021) no. 2.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Given a Lie group $G$, we elaborate the dynamics on $T^*T^*G$ and $T^*TG$, which is given by a Hamiltonian, as well as the dynamics on the Tulczyjew symplectic space $TT^*G$, which may be defined by a Lagrangian or a Hamiltonian function. As the trivializations we adapted respect the group structures of the iterated bundles, we exploit all possible subgroup reductions (Poisson, symplectic or both) of higher order dynamics.
Keywords: Euler-Poincaré equations, Lie-Poisson equations, higher order dynamics on Lie groups
@article{TAM_2021_48_2_a8,
     author = {O\u{g}ul Esen and Hasan G\"umral and Serkan S\"utl\"u},
     title = {Tulczyjew's triplet for {Lie} groups {III:} {Higher} order dynamics and reductions for iterated bundles},
     journal = {Theoretical and applied mechanics},
     pages = {201 - 236},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2021},
     url = {http://geodesic.mathdoc.fr/item/TAM_2021_48_2_a8/}
}
TY  - JOUR
AU  - Oğul Esen
AU  - Hasan Gümral
AU  - Serkan Sütlü
TI  - Tulczyjew's triplet for Lie groups III: Higher order dynamics and reductions for iterated bundles
JO  - Theoretical and applied mechanics
PY  - 2021
SP  - 201 
EP  -  236
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_2021_48_2_a8/
ID  - TAM_2021_48_2_a8
ER  - 
%0 Journal Article
%A Oğul Esen
%A Hasan Gümral
%A Serkan Sütlü
%T Tulczyjew's triplet for Lie groups III: Higher order dynamics and reductions for iterated bundles
%J Theoretical and applied mechanics
%D 2021
%P 201 - 236
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_2021_48_2_a8/
%F TAM_2021_48_2_a8
Oğul Esen; Hasan Gümral; Serkan Sütlü. Tulczyjew's triplet for Lie groups III: Higher order dynamics and reductions for iterated bundles. Theoretical and applied mechanics, Tome 48 (2021) no. 2. http://geodesic.mathdoc.fr/item/TAM_2021_48_2_a8/