Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization
Theoretical and applied mechanics, Tome 46 (2019) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this note we consider the nonholonomic problem of rolling without slipping and twisting of an $n$-dimensional balanced ball over a fixed sphere. This is a $SO(n)$--Chaplygin system with an invariant measure that reduces to the cotangent bundle $T^*S^{n-1}$. For the rigid body inertia operator $\mathbb I\omega=I\omega+\omega I$, $I=\operatorname{diag}(I_1,\dots,I_n)$ with a symmetry $I_1=I_2=\dots=I_{r} \ne I_{r+1}=I_{r+2}=\dots=I_n$, we prove that the reduced system is integrable, general trajectories are quasi-periodic, while for $r\ne 1,n-1$ the Chaplygin reducing multiplier method does not apply.
Keywords: nonholonomic Chaplygin systems, invariant measure, integrability
@article{TAM_2019_46_1_a7,
     author = {Bo\v{z}idar Jovanovi\'c},
     title = {Note on a ball rolling over a sphere: integrable {Chaplygin} system with an invariant measure without {Chaplygin} {Hamiltonization}},
     journal = {Theoretical and applied mechanics},
     pages = {97 - 108},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2019},
     url = {http://geodesic.mathdoc.fr/item/TAM_2019_46_1_a7/}
}
TY  - JOUR
AU  - Božidar Jovanović
TI  - Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization
JO  - Theoretical and applied mechanics
PY  - 2019
SP  - 97 
EP  -  108
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_2019_46_1_a7/
ID  - TAM_2019_46_1_a7
ER  - 
%0 Journal Article
%A Božidar Jovanović
%T Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization
%J Theoretical and applied mechanics
%D 2019
%P 97 - 108
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_2019_46_1_a7/
%F TAM_2019_46_1_a7
Božidar Jovanović. Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization. Theoretical and applied mechanics, Tome 46 (2019) no. 1. http://geodesic.mathdoc.fr/item/TAM_2019_46_1_a7/