Hydrodynamic forces on two moving discs
Theoretical and applied mechanics, Tome 31 (2004) no. 2.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We give a detailed presentation of a flexible method for constructing explicit expressions of irrotational and incompressible fluid flows around two rigid circular moving discs. We also discuss how such expressions can be used to compute the fluid-induced forces and torques on the discs in terms of Killing drives. Conformal mapping techniques are used to identify a meromorphic function on an annular region in C with a flow around two circular discs by a Mobius transformation. First order poles in the annular region correspond to vortices outside of the two discs. Inflows are incorporated by putting a second order pole at the point in the annulus that corresponds to infinity.
Keywords: Killing drives, conformal mapping techniques, meromorphic function, Mobius transformation, annular region
@article{TAM_2004_31_2_a3,
     author = {D. A. Burton and J. Gratus and R. W. Tucker},
     title = {Hydrodynamic forces on two moving discs},
     journal = {Theoretical and applied mechanics},
     pages = {153 - 188},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/TAM_2004_31_2_a3/}
}
TY  - JOUR
AU  - D. A. Burton
AU  - J. Gratus
AU  - R. W. Tucker
TI  - Hydrodynamic forces on two moving discs
JO  - Theoretical and applied mechanics
PY  - 2004
SP  - 153 
EP  -  188
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_2004_31_2_a3/
ID  - TAM_2004_31_2_a3
ER  - 
%0 Journal Article
%A D. A. Burton
%A J. Gratus
%A R. W. Tucker
%T Hydrodynamic forces on two moving discs
%J Theoretical and applied mechanics
%D 2004
%P 153 - 188
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_2004_31_2_a3/
%F TAM_2004_31_2_a3
D. A. Burton; J. Gratus; R. W. Tucker. Hydrodynamic forces on two moving discs. Theoretical and applied mechanics, Tome 31 (2004) no. 2. http://geodesic.mathdoc.fr/item/TAM_2004_31_2_a3/