Incompressible laminar temperature boundary layer on a body of revolution: The adiabatic case
Theoretical and applied mechanics, Tome 30 (2003) no. 4.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the paper the universal governing equations of incompressible laminar temperature boundary layer on the sphere are obtained using the improved method of general similarity for the case of adiabatic boundary conditions. Universal solutions in one parametric approximation for Pr=1 and Pr=0.72 are obtained by numerical integration. Calculated universal functions for temperature boundary layer are presented graphically. As an example eigen-temperature of the sphere are calculated and discussed.
@article{TAM_2003_30_4_a0,
     author = {Mira Miri\'c-Milosavljevi\'c and Milo\v{s} D. Pavlovi\'c},
     title = {Incompressible laminar temperature boundary layer on a body of revolution: {The} adiabatic case},
     journal = {Theoretical and applied mechanics},
     pages = {247 - 263},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2003},
     url = {http://geodesic.mathdoc.fr/item/TAM_2003_30_4_a0/}
}
TY  - JOUR
AU  - Mira Mirić-Milosavljević
AU  - Miloš D. Pavlović
TI  - Incompressible laminar temperature boundary layer on a body of revolution: The adiabatic case
JO  - Theoretical and applied mechanics
PY  - 2003
SP  - 247 
EP  -  263
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_2003_30_4_a0/
ID  - TAM_2003_30_4_a0
ER  - 
%0 Journal Article
%A Mira Mirić-Milosavljević
%A Miloš D. Pavlović
%T Incompressible laminar temperature boundary layer on a body of revolution: The adiabatic case
%J Theoretical and applied mechanics
%D 2003
%P 247 - 263
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_2003_30_4_a0/
%F TAM_2003_30_4_a0
Mira Mirić-Milosavljević; Miloš D. Pavlović. Incompressible laminar temperature boundary layer on a body of revolution: The adiabatic case. Theoretical and applied mechanics, Tome 30 (2003) no. 4. http://geodesic.mathdoc.fr/item/TAM_2003_30_4_a0/