Plane symmetric cosmological micro model in modified theory of Einstein’s general relativity
Theoretical and applied mechanics, Tome 30 (2003) no. 3.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we have investigated an anisotropic homogeneous plane symmetric cosmological micro-model in the presence of massless scalar field in modified theory of Einstein's general relativity. Some interesting physical and geometrical aspects of the model together with singularity in the model are discussed. Further, it is shown that this theory is valid and leads to Einstein's theory as the coupling parameter $\lambda\to0$ in micro (i.e. quantum) level in general.
Keywords: anisotropy, modified Einstein's relativity, quantum micro-level
@article{TAM_2003_30_3_a0,
     author = {U. K. Panigrahi and R. C. Sahu},
     title = {Plane symmetric cosmological micro model in modified theory of {Einstein{\textquoteright}s} general relativity},
     journal = {Theoretical and applied mechanics},
     pages = {163 - 175},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2003},
     url = {http://geodesic.mathdoc.fr/item/TAM_2003_30_3_a0/}
}
TY  - JOUR
AU  - U. K. Panigrahi
AU  - R. C. Sahu
TI  - Plane symmetric cosmological micro model in modified theory of Einstein’s general relativity
JO  - Theoretical and applied mechanics
PY  - 2003
SP  - 163 
EP  -  175
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_2003_30_3_a0/
ID  - TAM_2003_30_3_a0
ER  - 
%0 Journal Article
%A U. K. Panigrahi
%A R. C. Sahu
%T Plane symmetric cosmological micro model in modified theory of Einstein’s general relativity
%J Theoretical and applied mechanics
%D 2003
%P 163 - 175
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_2003_30_3_a0/
%F TAM_2003_30_3_a0
U. K. Panigrahi; R. C. Sahu. Plane symmetric cosmological micro model in modified theory of Einstein’s general relativity. Theoretical and applied mechanics, Tome 30 (2003) no. 3. http://geodesic.mathdoc.fr/item/TAM_2003_30_3_a0/