Geometry and dynamics of vortex sheets in 3 dimension
Theoretical and applied mechanics, 28-29 (2002) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We consider the properties and dynamics of vortex sheets from a geometrical, coordinate-free, perspective. Distribution-valued forms (de Rham currents) are used to represent the fluid velocity and vorticity due to the vortex sheets. The smooth velocities on either side of the sheets are solved in terms of the sheet strengths using the language of double forms. The classical results regarding the continuity of the sheet normal component of the velocity and the conservation of vorticity are exposed in this setting. The formalism is then applied to the case of the self-induced velocity of an isolated vortex sheet. We develop a simplified expression for the sheet velocity in terms of representative curves. Its relevance to the classical Localized Induction Approximation (LIA) to vortex filament dynamics is discussed.
@article{TAM_2002_28-29_1_a3,
     author = {D. A. Burton and R. W. Tucker},
     title = {Geometry and dynamics of vortex sheets in 3 dimension},
     journal = {Theoretical and applied mechanics},
     pages = {55 - 75},
     publisher = {mathdoc},
     volume = {28-29},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/TAM_2002_28-29_1_a3/}
}
TY  - JOUR
AU  - D. A. Burton
AU  - R. W. Tucker
TI  - Geometry and dynamics of vortex sheets in 3 dimension
JO  - Theoretical and applied mechanics
PY  - 2002
SP  - 55 
EP  -  75
VL  - 28-29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_2002_28-29_1_a3/
ID  - TAM_2002_28-29_1_a3
ER  - 
%0 Journal Article
%A D. A. Burton
%A R. W. Tucker
%T Geometry and dynamics of vortex sheets in 3 dimension
%J Theoretical and applied mechanics
%D 2002
%P 55 - 75
%V 28-29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_2002_28-29_1_a3/
%F TAM_2002_28-29_1_a3
D. A. Burton; R. W. Tucker. Geometry and dynamics of vortex sheets in 3 dimension. Theoretical and applied mechanics, 28-29 (2002) no. 1. http://geodesic.mathdoc.fr/item/TAM_2002_28-29_1_a3/