Stochastic homogenization and macroscopic modelling of composites and flow through porous media
Theoretical and applied mechanics, 28-29 (2002) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The aim of this contribution is mainly twofold. First, the stochastic two-scale convergence in the mean developed by Bourgeat et al. [13] is used to derive the macroscopic models of: (i) diffusion in random porous medium, (ii) nonstationary flow of Stokesian fluid through random linear elastic porous medium. Second, the multi-scale convergence method developed by Allaire and Briane [7] for the case of several microperiodic scales is extended to random distribution of heterogeneities characterized by separated scales (stochastic reiterated homogenization).
@article{TAM_2002_28-29_1_a17,
     author = {J\'ozef Joachim Telega and W{\l}odzimierz Bielski},
     title = {Stochastic homogenization and macroscopic modelling of composites and flow through porous media},
     journal = {Theoretical and applied mechanics},
     pages = {337 - 377},
     publisher = {mathdoc},
     volume = {28-29},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/TAM_2002_28-29_1_a17/}
}
TY  - JOUR
AU  - Józef Joachim Telega
AU  - Włodzimierz Bielski
TI  - Stochastic homogenization and macroscopic modelling of composites and flow through porous media
JO  - Theoretical and applied mechanics
PY  - 2002
SP  - 337 
EP  -  377
VL  - 28-29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_2002_28-29_1_a17/
ID  - TAM_2002_28-29_1_a17
ER  - 
%0 Journal Article
%A Józef Joachim Telega
%A Włodzimierz Bielski
%T Stochastic homogenization and macroscopic modelling of composites and flow through porous media
%J Theoretical and applied mechanics
%D 2002
%P 337 - 377
%V 28-29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_2002_28-29_1_a17/
%F TAM_2002_28-29_1_a17
Józef Joachim Telega; Włodzimierz Bielski. Stochastic homogenization and macroscopic modelling of composites and flow through porous media. Theoretical and applied mechanics, 28-29 (2002) no. 1. http://geodesic.mathdoc.fr/item/TAM_2002_28-29_1_a17/