An $O(n)$ invariant rank 1 convex function that is not polyconvex
Theoretical and applied mechanics, 28-29 (2002) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

An $O(n)$ invariant nonnegative rank 1 convex function of linear growth is given that is not polyconvex. This answers a recent question [8, p.182] and [5]. The polyconvex hull of the function is calculated explicitly if $n=2$.
@article{TAM_2002_28-29_1_a16,
     author = {M. \v{S}ilhav\'y},
     title = {An $O(n)$ invariant rank 1 convex function that is not polyconvex},
     journal = {Theoretical and applied mechanics},
     pages = {325 - 336},
     publisher = {mathdoc},
     volume = {28-29},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/TAM_2002_28-29_1_a16/}
}
TY  - JOUR
AU  - M. Šilhavý
TI  - An $O(n)$ invariant rank 1 convex function that is not polyconvex
JO  - Theoretical and applied mechanics
PY  - 2002
SP  - 325 
EP  -  336
VL  - 28-29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_2002_28-29_1_a16/
ID  - TAM_2002_28-29_1_a16
ER  - 
%0 Journal Article
%A M. Šilhavý
%T An $O(n)$ invariant rank 1 convex function that is not polyconvex
%J Theoretical and applied mechanics
%D 2002
%P 325 - 336
%V 28-29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_2002_28-29_1_a16/
%F TAM_2002_28-29_1_a16
M. Šilhavý. An $O(n)$ invariant rank 1 convex function that is not polyconvex. Theoretical and applied mechanics, 28-29 (2002) no. 1. http://geodesic.mathdoc.fr/item/TAM_2002_28-29_1_a16/