Least-squares mixed finite elements for the linear elasticity problem
Theoretical and applied mechanics, Tome 25 (1999) no. 1, p. 21 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We expose a theoretical analysis of a least-squares mixed finite elements method for the linear elasticity problem in two-and three-dimensional domains. The coerciveness of the weak form of the problem is proved. It is shown that the finite element approximation yields a symmetric positive definite linear system with condition number $O(h^{-2})$. The error estimate is obtained.
@article{TAM_1999_25_1_a1,
     author = {Bo\v{s}ko Jovanovi\'c and Ivan \v{S}estak},
     title = {Least-squares mixed finite elements for the linear elasticity problem},
     journal = {Theoretical and applied mechanics},
     pages = {21 },
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1999_25_1_a1/}
}
TY  - JOUR
AU  - Boško Jovanović
AU  - Ivan Šestak
TI  - Least-squares mixed finite elements for the linear elasticity problem
JO  - Theoretical and applied mechanics
PY  - 1999
SP  - 21 
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1999_25_1_a1/
LA  - en
ID  - TAM_1999_25_1_a1
ER  - 
%0 Journal Article
%A Boško Jovanović
%A Ivan Šestak
%T Least-squares mixed finite elements for the linear elasticity problem
%J Theoretical and applied mechanics
%D 1999
%P 21 
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1999_25_1_a1/
%G en
%F TAM_1999_25_1_a1
Boško Jovanović; Ivan Šestak. Least-squares mixed finite elements for the linear elasticity problem. Theoretical and applied mechanics, Tome 25 (1999) no. 1, p. 21 . http://geodesic.mathdoc.fr/item/TAM_1999_25_1_a1/