Least-squares mixed finite elements for the linear elasticity problem
Theoretical and applied mechanics, Tome 25 (1999) no. 1, p. 21

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We expose a theoretical analysis of a least-squares mixed finite elements method for the linear elasticity problem in two-and three-dimensional domains. The coerciveness of the weak form of the problem is proved. It is shown that the finite element approximation yields a symmetric positive definite linear system with condition number $O(h^{-2})$. The error estimate is obtained.
@article{TAM_1999_25_1_a1,
     author = {Bo\v{s}ko Jovanovi\'c and Ivan \v{S}estak},
     title = {Least-squares mixed finite elements for the linear elasticity problem},
     journal = {Theoretical and applied mechanics},
     pages = {21 },
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1999_25_1_a1/}
}
TY  - JOUR
AU  - Boško Jovanović
AU  - Ivan Šestak
TI  - Least-squares mixed finite elements for the linear elasticity problem
JO  - Theoretical and applied mechanics
PY  - 1999
SP  - 21 
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1999_25_1_a1/
LA  - en
ID  - TAM_1999_25_1_a1
ER  - 
%0 Journal Article
%A Boško Jovanović
%A Ivan Šestak
%T Least-squares mixed finite elements for the linear elasticity problem
%J Theoretical and applied mechanics
%D 1999
%P 21 
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1999_25_1_a1/
%G en
%F TAM_1999_25_1_a1
Boško Jovanović; Ivan Šestak. Least-squares mixed finite elements for the linear elasticity problem. Theoretical and applied mechanics, Tome 25 (1999) no. 1, p. 21 . http://geodesic.mathdoc.fr/item/TAM_1999_25_1_a1/