On the mean rotation in finite deformation
Theoretical and applied mechanics, Tome 24 (1998) no. 1, p. 55 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

in this paper we define the mean rotation angle for deformable body. Then making use of this definition we show that such a measure of a rotation may be used to define mean rotation in sense of Cauchy and Truesdell and Toupin uniquely for each plane at any point of the Iody without any restriction.
@article{TAM_1998_24_1_a3,
     author = {Jovo Jari\'c and Stephen Cowin},
     title = {On the mean rotation in finite deformation},
     journal = {Theoretical and applied mechanics},
     pages = {55 },
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1998_24_1_a3/}
}
TY  - JOUR
AU  - Jovo Jarić
AU  - Stephen Cowin
TI  - On the mean rotation in finite deformation
JO  - Theoretical and applied mechanics
PY  - 1998
SP  - 55 
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1998_24_1_a3/
LA  - en
ID  - TAM_1998_24_1_a3
ER  - 
%0 Journal Article
%A Jovo Jarić
%A Stephen Cowin
%T On the mean rotation in finite deformation
%J Theoretical and applied mechanics
%D 1998
%P 55 
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1998_24_1_a3/
%G en
%F TAM_1998_24_1_a3
Jovo Jarić; Stephen Cowin. On the mean rotation in finite deformation. Theoretical and applied mechanics, Tome 24 (1998) no. 1, p. 55 . http://geodesic.mathdoc.fr/item/TAM_1998_24_1_a3/