On tensor invariants of dynamical systems on threedimentional manyfolds
Theoretical and applied mechanics, Tome 20 (1994) no. 1, p. 119 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We consider dynamical systems on compact threedimensional manifolds which have an invariant volume form. An important example is given by Hamilton equations of a system with two degrees of freedom restricted to three-dimensional lever surface of the energy integral. In this system we study the existence of tensor invariants (a first integral, a symmetry field, an invariant form) and give conditions of integrability by quadratures under the existence of a tensor invariant. We show that the infinite number of nondegenerate periodic trajectories and spliting of separatices obstruct the existence of nontrivial integral invariants analytical on the three-dimensional manifeld
@article{TAM_1994_20_1_a9,
     author = {V. V. Kozlov},
     title = {On tensor invariants of dynamical systems on threedimentional manyfolds},
     journal = {Theoretical and applied mechanics},
     pages = {119 },
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1994_20_1_a9/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - On tensor invariants of dynamical systems on threedimentional manyfolds
JO  - Theoretical and applied mechanics
PY  - 1994
SP  - 119 
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1994_20_1_a9/
LA  - en
ID  - TAM_1994_20_1_a9
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T On tensor invariants of dynamical systems on threedimentional manyfolds
%J Theoretical and applied mechanics
%D 1994
%P 119 
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1994_20_1_a9/
%G en
%F TAM_1994_20_1_a9
V. V. Kozlov. On tensor invariants of dynamical systems on threedimentional manyfolds. Theoretical and applied mechanics, Tome 20 (1994) no. 1, p. 119 . http://geodesic.mathdoc.fr/item/TAM_1994_20_1_a9/