Is a conservative reversible dynamical system realisable as a non-holonomic one?
Theoretical and applied mechanics, Tome 20 (1994) no. 1, p. 253 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Consider a system with two groupes of variables: the time derivatives of ’’coordinates” are linear and homogeneous on the ’’velocities”, the time derivatives of "velocities” are quadratic, and an integral also quadratic on the ”velocities” exists. The article establish generic conditions respecting which such dynamical equations represent a conservative nonholonomic system.
@article{TAM_1994_20_1_a20,
     author = {Ya. V. Tatarinov},
     title = {Is a conservative reversible dynamical system realisable as a non-holonomic one?},
     journal = {Theoretical and applied mechanics},
     pages = {253 },
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1994_20_1_a20/}
}
TY  - JOUR
AU  - Ya. V. Tatarinov
TI  - Is a conservative reversible dynamical system realisable as a non-holonomic one?
JO  - Theoretical and applied mechanics
PY  - 1994
SP  - 253 
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1994_20_1_a20/
LA  - en
ID  - TAM_1994_20_1_a20
ER  - 
%0 Journal Article
%A Ya. V. Tatarinov
%T Is a conservative reversible dynamical system realisable as a non-holonomic one?
%J Theoretical and applied mechanics
%D 1994
%P 253 
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1994_20_1_a20/
%G en
%F TAM_1994_20_1_a20
Ya. V. Tatarinov. Is a conservative reversible dynamical system realisable as a non-holonomic one?. Theoretical and applied mechanics, Tome 20 (1994) no. 1, p. 253 . http://geodesic.mathdoc.fr/item/TAM_1994_20_1_a20/